Tag Archives: forces

#431343 How Technology Is Driving Us Toward Peak ...

At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.

“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”

An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.

“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”

This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#430868 These 7 Forces Are Changing the World at ...

It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.

“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading

Posted in Human Robots

#430801 3 Exponentials to Watch | Future of ...

In the third of Singularity University’s Future of Everything YouTube series with Jason Silva, Silva discusses “The Big Three” exponential technologies, which he defines as GNR: genetics, nanotechnology, and robotics.
“If I were to be talking to entrepreneurs, if I was talking to heads of companies, I would tell them, pay attention to exponentials,” Silva says. “Pay attention to disruptive technologies… These are the forces that are upending the world. These are the trillion-dollar industries that are going to emerge out of no place.”

Image Credit: Shutterstock Continue reading

Posted in Human Robots