Tag Archives: FOOD
#439916 This Restaurant Robot Fries Your Food to ...
Four and a half years ago, a robot named Flippy made its burger-cooking debut at a fast food restaurant called CaliBurger. The bot consisted of a cart on wheels with an extending arm, complete with a pneumatic pump that let the machine swap between tools: tongs, scrapers, and spatulas. Flippy’s main jobs were pulling raw patties from a stack and placing them on the grill, tracking each burger’s cook time and temperature, and transferring cooked burgers to a plate.
This initial iteration of the fast-food robot—or robotic kitchen assistant, as its creators called it—was so successful that a commercial version launched last year. Its maker Miso Robotics put Flippy on the market for $30,000, and the bot was no longer limited to just flipping burgers; the new and improved Flippy could cook 19 different foods, including chicken wings, onion rings, french fries, and the Impossible Burger. It got sleeker, too: rather than sitting on a wheeled cart, the new Flippy was a “robot on a rail,” with the rail located along the hood of restaurant stoves.
This week, Miso Robotics announced an even newer, more improved Flippy robot called Flippy 2 (hey, they’re consistent). Most of the updates and improvements on the new bot are based on feedback the company received from restaurant chain White Castle, the first big restaurant chain to go all-in on the original Flippy.
So how is Flippy 2 different? The new robot can do the work of an entire fry station without any human assistance, and can do more than double the number of food preparation tasks its older sibling could do, including filling, emptying, and returning fry baskets.
These capabilities have made the robot more independent, eliminating the need for a human employee to step in at the beginning or end of the cooking process. When foods are placed in fry bins, the robot’s AI vision identifies the food, picks it up, and cooks it in a fry basket designated for that food specifically (i.e., onion rings won’t be cooked in the same basket as fish sticks). When cooking is complete, Flippy 2 moves the ready-to-go items to a hot-holding area.
Miso Robotics says the new robot’s throughput is 30 percent higher than that of its predecessor, which adds up to around 60 baskets of fried food per hour. So much fried food. Luckily, Americans can’t get enough fried food, in general and especially as the pandemic drags on. Even more importantly, the current labor shortages we’re seeing mean restaurant chains can’t hire enough people to cook fried food, making automated tools like Flippy not only helpful, but necessary.
“Since Flippy’s inception, our goal has always been to provide a customizable solution that can function harmoniously with any kitchen and without disruption,” said Mike Bell, CEO of Miso Robotics. “Flippy 2 has more than 120 configurations built into its technology and is the only robotic fry station currently being produced at scale.”
At the beginning of the pandemic, many foresaw that Covid-19 would push us into quicker adoption of many technologies that were already on the horizon, with automation of repetitive tasks being high on the list. They were right, and we’ve been lucky to have tools like Zoom to keep us collaborating and Flippy to keep us eating fast food (to whatever extent you consider eating fast food an essential activity; I mean, you can’t cook every day). Now if only there was a tech fix for inflation and housing shortages…
Seeing as how there’ve been three different versions of Flippy rolled out in the last four and a half years, there are doubtless more iterations coming, each with new skills and improved technology. But the burger robot is just one of many new developments in automation of food preparation and delivery. Take this pizzeria in Paris: there are no humans involved in the cooking, ordering, or pick-up process at all. And just this week, IBM and McDonald’s announced a collaboration to create drive-through lanes run by AI.
So it may not be long before you can order a meal from one computer, have that meal cooked by another computer, then have it delivered to your home or waiting vehicle by a third—you guessed it—computer.
Image Credit: Miso Robotics Continue reading
#437643 Video Friday: Matternet Launches Urban ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
IROS 2020 – October 25-25, 2020 – [Online]
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
Sixteen teams chose their roster of virtual robots and sensor payloads, some based on real-life subterranean robots, and submitted autonomy and mapping algorithms that SubT Challenge officials then tested across eight cave courses in the cloud-based SubT Simulator. Their robots traversed the cave environments autonomously, without any input or adjustments from human operators. The Cave Circuit Virtual Competition teams earned points by correctly finding, identifying, and localizing up to 20 artifacts hidden in the cave courses within five-meter accuracy.
[ SubT ]
This year, the KUKA Innovation Award’s international jury of experts received a total of more than 40 ideas. The five finalist teams had time until November to implement their ideas. A KUKA LBR Med lightweight robot – the first robotic component to be certified for integration into a medical device – has been made available to them for this purpose. Beyond this, the teams have received a training for the hardware and coaching from KUKA experts throughout the competition. At virtual.MEDICA from 16-19.11.2020, the finalists presented their concepts to an international audience of experts and to the Innovation Award jury.
The winner of the KUKA Innovation Award 2020, worth 20,000 euros, is Team HIFUSK from the Scuola Superiore Sant'Anna in Italy.
[ KUKA Innovation Award ]
Like everything else the in-person Cybathlon event was cancelled, but the competition itself took place, just a little more distributed than it would have been otherwise.
[ Cybathlon ]
Matternet, developer of the world's leading urban drone logistics platform, today announced the launch of operations at Labor Berlin Charité Vivantes in Germany. The program kicked-off November 17, 2020 with permanent operations expected to take flight next year, creating the first urban BVLOS [Beyond Visual Line of Sight] medical drone delivery network in the European Union. The drone network expects to significantly improve the timeliness and efficiency of Labor Berlin’s diagnostics services by providing an option to avoid roadway delays, which will improve patient experience with potentially life-saving benefits and lower costs.
Routine BVLOS over an urban area? Impressive.
[ Matternet ]
Robots playing diabolo!
Thanks Thilo!
[ OMRON Sinic X]
Anki's tech has been repackaged into this robot that serves butter:
[ Butter Robot ]
Berkshire Grey just announced our Picking With Purpose Program in which we’ve partnered our robotic automation solutions with food rescue organizations City Harvest and The Greater Boston Food Bank to pick, pack, and distribute food to families in need in time for Thanksgiving. Berkshire Grey donated about 40,000 pounds of food, used one of our robotic automation systems to pick and pack that food into meal boxes for families in need, and our team members volunteered to run the system. City Harvest and The Greater Boston Food Bank are distributing the 4,000 meal boxes we produced. This is just the beginning. We are building a sponsorship program to make Picking With Purpose an ongoing initiative.
[ Berkshire Grey ]
Thanks Peter!
We posted a video previously of Cassie learning to skip, but here's a much more detailed look (accompanying an ICRA submission) that includes some very impressive stair descending.
[ DRL ]
From garage inventors to university students and entrepreneurs, NASA is looking for ideas on how to excavate the Moon’s icy regolith, or dirt, and deliver it to a hypothetical processing plant at the lunar South Pole. The NASA Break the Ice Lunar Challenge, a NASA Centennial Challenge, is now open for registration. The competition will take place over two phases and will reward new ideas and approaches for a system architecture capable of excavating and moving icy regolith and water on the lunar surface.
[ NASA ]
Adaptation to various scene configurations and object properties, stability and dexterity in robotic grasping manipulation is far from explored. This work presents an origami-based shape morphing fingertip design to actively tackle the grasping stability and dexterity problems. The proposed fingertip utilizes origami as its skeleton providing degrees of freedom at desired positions and motor-driven four-bar-linkages as its transmission components to achieve a compact size of the fingertip.
[ Paper ]
“If Roboy crashes… you die.”
[ Roboy ]
Traditionally lunar landers, as well as other large space exploration vehicles, are powered by solar arrays or small nuclear reactors. Rovers and small robots, however, are not big enough to carry their own dedicated power supplies and must be tethered to their larger counterparts via electrical cables. Tethering severely restricts mobility, and cables are prone to failure due to lunar dust (regolith) interfering with electrical contact points. Additionally, as robots become smaller and more complex, they are fitted with additional sensors that require more power, further exacerbating the problem. Lastly, solar arrays are not viable for charging during the lunar night. WiBotic is developing rapid charging systems and energy monitoring base stations for lunar robots, including the CubeRover – a shoebox-sized robot designed by Astrobotic – that will operate autonomously and charge wirelessly on the Moon.
[ WiBotic ]
Watching pick and place robots is my therapy.
[ Soft Robotics ]
It's really, really hard to beat liquid fuel for energy storage, as Quaternium demonstrates with their hybrid drone.
[ Quaternium ]
Thanks Gregorio!
State-of-the-art quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a novel quadrotor simulator: Flightmare.
[ Flightmare ]
Drones that chuck fire-fighting balls into burning buildings, sure!
[ LARICS ]
If you missed ROS World, that's okay, because all of the talks are now online. Here's the opening keynote from Vivian Chu and Diligent robotics, along with a couple fun lightning talks.
[ ROS World 2020 ]
This week's CMU RI Seminar is by Chelsea Finn from Stanford University, on Data Scalability for Robot Learning.
Recent progress in robot learning has demonstrated how robots can acquire complex manipulation skills from perceptual inputs through trial and error, particularly with the use of deep neural networks. Despite these successes, the generalization and versatility of robots across environment conditions, tasks, and objects remains a major challenge. And, unfortunately, our existing algorithms and training set-ups are not prepared to tackle such challenges, which demand large and diverse sets of tasks and experiences. In this talk, I will discuss two central challenges that pertain to data scalability: first, acquiring large datasets of diverse and useful interactions with the world, and second, developing algorithms that can learn from such datasets. Then, I will describe multiple approaches that we might take to rethink our algorithms and data pipelines to serve these goals. This will include algorithms that allow a real robot to explore its environment in a targeted manner with minimal supervision, approaches that can perform robot reinforcement learning with videos of human trial-and-error experience, and visual model-based RL approaches that are not bottlenecked by their capacity to model everything about the world.
[ CMU RI ] Continue reading