Tag Archives: following
#437695 Video Friday: Even Robots Know That You ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.
From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.
Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.
[ Flightmare ]
Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.
We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.
[ Project ]
Thanks Fan!
The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.
Fetch Robot disinfecting dance party woo!
[ Oregon State ]
How could you not take a mask from this robot?
[ Reachy ]
This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.
[ ARL ]
Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.
Dat backing into the charging dock tho.
[ Pepper ]
RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.
This is from 2015, why isn't all of my furniture autonomous yet?!
[ KAIST ]
The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.
[ SeaDrone ]
Thanks Eduardo!
Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.
[ ETH ]
Thanks Fan!
Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.
[ Georgia Tech ]
Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:
A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.
[ Graze ]
The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!
[ Interbotix ]
Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.
[ Shadow Robot ]
Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.
[ Quanser ]
This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.
This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.
[ Tristan D. Yan ]
Thanks Fan!
In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.
[ RPG ] Continue reading
#437687 Video Friday: Bittle Is a Palm-Sized ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.
Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.
Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.
[ Kickstarter ]
Thanks Rz!
I still maintain that Stickybot was one of the most elegantly designed robots ever.
[ Stanford ]
With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.
[ PAL Robotics ]
Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.
Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.
Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.
Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.
[ Energy Robotics ]
Thanks Stefan!
Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.
[ DrGuero ]
World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.
[ Extend Robotics ]
The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:
[ Robocon ]
Sphero has managed to pack an entire Sphero into a much smaller sphere.
[ Sphero ]
Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.
[ Squishy Robotics ]
Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.
[ AU AF ]
Impressive what the Ghost Robotics V60 can do without any vision sensors on it.
[ Ghost Robotics ]
Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.
[ Yumi ]
For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.
[ MIT ]
This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.
[ University of Guleph ]
Australia has one of these now, should the rest of us panic?
[ Boeing ]
Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.
[ Torc Robotics ] Continue reading
#437610 How Intel’s OpenBot Wants to Make ...
You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”
This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.
Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.
One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.
As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.
And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.
Image: OpenBot
Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.
If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”
Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.
The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading
#437276 Cars Will Soon Be Able to Sense and ...
Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.
Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.
Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.
What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?
Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.
Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.
Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.
Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.
But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).
Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?
Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.
And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.
Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.
A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.
Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.
Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.
Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.
Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.
In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.
Image Credit: Free-Photos from Pixabay Continue reading