Tag Archives: following
#433852 How Do We Teach Autonomous Cars To Drive ...
Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.
Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.
What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?
Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.
At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.
Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.
Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.
The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.
Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.
We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.
A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.
The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.
Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.
Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading
#433828 Using Big Data to Give Patients Control ...
Big data, personalized medicine, artificial intelligence. String these three buzzphrases together, and what do you have?
A system that may revolutionize the future of healthcare, by bringing sophisticated health data directly to patients for them to ponder, digest, and act upon—and potentially stop diseases in their tracks.
At Singularity University’s Exponential Medicine conference in San Diego this week, Dr. Ran Balicer, director of the Clalit Research Institute in Israel, painted a futuristic picture of how big data can merge with personalized healthcare into an app-based system in which the patient is in control.
Dr. Ran Balicer at Exponential Medicine
Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: “Within six hours, you’re going to have a heart attack. So why don’t you come into the clinic and we can fix that.” Crisis averted.
Following the treatment, you’re at home monitoring your biomarkers, lab test results, and other health information through an app with a clean, beautiful user interface. Within the app, you can observe how various health-influencing life habits—smoking, drinking, insufficient sleep—influence your chance of future cardiovascular disease risks by toggling their levels up or down.
There’s more: you can also set a health goal within the app—for example, stop smoking—which automatically informs your physician. The app will then suggest pharmaceuticals to help you ditch the nicotine and automatically sends the prescription to your local drug store. You’ll also immediately find a list of nearby support groups that can help you reach your health goal.
With this hefty dose of AI, you’re in charge of your health—in fact, probably more so than under current healthcare systems.
Sound fantastical? In fact, this type of preemptive care is already being provided in some countries, including Israel, at a massive scale, said Balicer. By mining datasets with deep learning and other powerful AI tools, we can predict the future—and put it into the hands of patients.
The Israeli Advantage
In order to apply big data approaches to medicine, you first need a giant database.
Israel is ahead of the game in this regard. With decades of electronic health records aggregated within a central warehouse, Israel offers a wealth of health-related data on the scale of millions of people and billions of data points. The data is incredibly multiplex, covering lab tests, drugs, hospital admissions, medical procedures, and more.
One of Balicer’s early successes was an algorithm that predicts diabetes, which allowed the team to notify physicians to target their care. Clalit has also been busy digging into data that predicts winter pneumonia, osteoporosis, and a long list of other preventable diseases.
So far, Balicer’s predictive health system has only been tested on a pilot group of patients, but he is expecting to roll out the platform to all patients in the database in the next few months.
Truly Personalized Medicine
To Balicer, whatever a machine can do better, it should be welcomed to do. AI diagnosticians have already enjoyed plenty of successes—but their collaboration remains mostly with physicians, at a point in time when the patient is already ill.
A particularly powerful use of AI in medicine is to bring insights and trends directly to the patient, such that they can take control over their own health and medical care.
For example, take the problem of tailored drug dosing. Current drug doses are based on average results conducted during clinical trials—the dosing is not tailored for any specific patient’s genetic and health makeup. But what if a doctor had already seen millions of other patients similar to your case, and could generate dosing recommendations more relevant to you based on that particular group of patients?
Such personalized recommendations are beyond the ability of any single human doctor. But with the help of AI, which can quickly process massive datasets to find similarities, doctors may soon be able to prescribe individually-tailored medications.
Tailored treatment doesn’t stop there. Another issue with pharmaceuticals and treatment regimes is that they often come with side effects: potentially health-threatening reactions that may, or may not, happen to you based on your biometrics.
Back in 2017, the New England Journal of Medicine launched the SPRINT Data Analysis Challenge, which urged physicians and data analysts to identify novel clinical findings using shared clinical trial data.
Working with Dr. Noa Dagan at the Clalit Research Institute, Balicer and team developed an algorithm that recommends whether or not a patient receives a particularly intensive treatment regime for hypertension.
Rather than simply looking at one outcome—normalized blood pressure—the algorithm takes into account an individual’s specific characteristics, laying out the treatment’s predicted benefits and harms for a particular patient.
“We built thousands of models for each patient to comprehensively understand the impact of the treatment for the individual; for example, a reduced risk for stroke and cardiovascular-related deaths could be accompanied by an increase in serious renal failure,” said Balicer. “This approach allows a truly personalized balance—allowing patients and their physicians to ultimately decide if the risks of the treatment are worth the benefits.”
This is already personalized medicine at its finest. But Balicer didn’t stop there.
We are not the sum of our biologics and medical stats, he said. A truly personalized approach needs to take a patient’s needs and goals and the sacrifices and tradeoffs they’re willing to make into account, rather than having the physician make decisions for them.
Balicer’s preventative system adds this layer of complexity by giving weights to different outcomes based on patients’ input of their own health goals. Rather than blindly following big data, the system holistically integrates the patient’s opinion to make recommendations.
Balicer’s system is just one example of how AI can truly transform personalized health care. The next big challenge is to work with physicians to further optimize these systems, in a way that doctors can easily integrate them into their workflow and embrace the technology.
“Health systems will not be replaced by algorithms, rest assured,” concluded Balicer, “but health systems that don’t use algorithms will be replaced by those that do.”
Image Credit: Magic mine / Shutterstock.com Continue reading
#433696 3 Big Ways Tech Is Disrupting Global ...
Disruptive business models are often powered by alternative financing. In Part 1 of this series, I discussed how mobile is redefining money and banking and shared some of the dramatic transformations in the global remittance infrastructure.
In this article, we’ll discuss:
Peer-to-peer lending
AI financial advisors and robo traders
Seamless Transactions
Let’s dive right back in…
Decentralized Lending = Democratized Access to Finances
Peer-to-peer (P2P) lending is an age-old practice, traditionally with high risk and extreme locality. Now, the P2P funding model is being digitized and delocalized, bringing lending online and across borders.
Zopa, the first official crowdlending platform, arrived in the United Kingdom in 2004. Since then, the consumer crowdlending platform has facilitated lending of over 3 billion euros ($3.5 billion USD) of loans.
Person-to-business crowdlending took off, again in the U.K., in 2005 with Funding Circle, now with over 5 billion euros (~5.8 billion USD) of capital loaned to small businesses around the world.
Crowdlending next took off in the US in 2006, with platforms like Prosper and Lending Club. The US crowdlending industry has boomed to $21 billion in loans, across 515,000 loans.
Let’s take a step back… to a time before banks, when lending took place between trusted neighbors in small villages across the globe. Lending started as peer-to-peer transactions.
As villages turned into towns, towns turned into cities, and cities turned into sprawling metropolises, neighborly trust and the ability to communicate across urban landscapes broke down. That’s where banks and other financial institutions came into play—to add trust back into the lending equation.
With crowdlending, we are evidently returning to this pre-centralized-banking model of loans, and moving away from cumbersome intermediaries (e.g. high fees, regulations, and extra complexity).
Fueled by the permeation of the internet, P2P lending took on a new form as ‘crowdlending’ in the early 2000s. Now, as blockchain and artificial intelligence arrive on the digital scene, P2P lending platforms are being overhauled with transparency, accountability, reliability, and immutability.
Artificial Intelligence Micro Lending & Credit Scores
We are beginning to augment our quantitative decision-making with neural networks processing borrowers’ financial data to determine their financial ‘fate’ (or, as some call it, your credit score). Companies like Smart Finance Group (backed by Kai Fu Lee and Sinovation Ventures) are using artificial intelligence to minimize default rates for tens of millions of microloans.
Smart Finance is fueled by users’ personal data, particularly smartphone data and usage behavior. Users are required to give Smart Finance access to their smartphone data, so that Smart Finance’s artificial intelligence engine can generate a credit score from the personal information.
The benefits of this AI-powered lending platform do not stop at increased loan payback rates; there’s a massive speed increase as well. Smart Finance loans are frequently approved in under eight seconds. As we’ve seen with other artificial intelligence disruptions, data is the new gold.
Digitizing access to P2P loans paves the way for billions of people currently without access to banking to leapfrog the centralized banking system, just as Africa bypassed landline phones and went straight to mobile. Leapfrogging centralized banking and the credit system is exactly what Smart Finance has done for hundreds of millions of people in China.
Blockchain-Backed Crowdlending
As artificial intelligence accesses even the most mundane mobile browsing data to assign credit scores, blockchain technologies, particularly immutable ledgers and smart contracts, are massive disruptors to the archaic banking system, building additional trust and transparency on top of current P2P lending models.
Immutable ledgers provide the necessary transparency for accurate credit and loan defaulting history. Smart contracts executed on these immutable ledgers bring the critical ability to digitally replace cumbersome, expensive third parties (like banks), allowing individual borrowers or businesses to directly connect with willing lenders.
Two of the leading blockchain platforms for P2P lending are ETHLend and SALT Lending.
ETHLend is an Ethereum-based decentralized application aiming to bring transparency and trust to P2P lending through Ethereum network smart contracts.
Secure Automated Lending Technology (SALT) allows cryptocurrency asset holders to use their digital assets as collateral for cash loans, without the need to liquidate their holdings, giving rise to a digital-asset-backed lending market.
While blockchain poses a threat to many of the large, centralized banking institutions, some are taking advantage of the new technology to optimize their internal lending, credit scoring, and collateral operations.
In March 2018, ING and Credit Suisse successfully exchanged 25 million euros using HQLA-X, a blockchain-based collateral lending platform.
HQLA-X runs on the R3 Corda blockchain, a platform designed specifically to help heritage financial and commerce institutions migrate away from their inefficient legacy financial infrastructure.
Blockchain and tokenization are going through their own fintech and regulation shakeup right now. In a future blog, I’ll discuss the various efforts to more readily assure smart contracts, and the disruptive business model of security tokens and the US Securities and Exchange Commission.
Parallels to the Global Abundance of Capital
The abundance of capital being created by the advent of P2P loans closely relates to the unprecedented global abundance of capital.
Initial coin offerings (ICOs) and crowdfunding are taking a strong stand in disrupting the $164 billion venture capital market. The total amount invested in ICOs has risen from $6.6 billion in 2017 to $7.15 billion USD in the first half of 2018. Crowdfunding helped projects raise more than $34 billion in 2017, with experts projecting that global crowdfunding investments will reach $300 billion by 2025.
In the last year alone, using ICOs, over a dozen projects have raised hundreds of millions of dollars in mere hours. Take Filecoin, for example, which raised $257 million in only 30 days; its first $135 million was raised in the first hour. Similarly, the Dragon Coin project (which itself is revolutionizing remittance in high-stakes casinos around the world) raised $320 million in its 30-day public ICO.
Some Important Takeaways…
Technology-backed fundraising and financial services are disrupting the world’s largest financial institutions. Anyone, anywhere, at anytime will be able to access the capital they need to pursue their idea.
The speed at which we can go from “I’ve got an idea” to “I run a billion-dollar company” is moving faster than ever.
Following Ray Kurzweil’s Law of Accelerating Returns, the rapid decrease in time to access capital is intimately linked (and greatly dependent on) a financial infrastructure (technology, institutions, platforms, and policies) that can adapt and evolve just as rapidly.
This new abundance of capital requires financial decision-making with ever-higher market prediction precision. That’s exactly where artificial intelligence is already playing a massive role.
Artificial Intelligence, Robo Traders, and Financial Advisors
On May 6, 2010, the Dow Jones Industrial Average suddenly collapsed by 998.5 points (equal to 8 percent, or $1 trillion). The crash lasted over 35 minutes and is now known as the ‘Flash Crash’. While no one knows the specific reason for this 2010 stock market anomaly, experts widely agree that the Flash Crash had to do with algorithmic trading.
With the ability to have instant, trillion-dollar market impacts, algorithmic trading and artificial intelligence are undoubtedly ingrained in how financial markets operate.
In 2017, CNBC.com estimated that 90 percent of daily trading volume in stock trading is done by machine algorithms, and only 10 percent is carried out directly by humans.
Artificial intelligence and financial management algorithms are not only available to top Wall Street players.
Robo-advisor financial management apps, like Wealthfront and Betterment, are rapidly permeating the global market. Wealthfront currently has $9.5 billion in assets under management, and Betterment has $10 billion.
Artificial intelligent financial agents are already helping financial institutions protect your money and fight fraud. A prime application for machine learning is in detecting anomalies in your spending and transaction habits, and flagging potentially fraudulent transactions.
As artificial intelligence continues to exponentially increase in power and capabilities, increasingly powerful trading and financial management bots will come online, finding massive new and previously lost streams of wealth.
How else are artificial intelligence and automation transforming finance?
Disruptive Remittance and Seamless Transactions
When was the last time you paid in cash at a toll booth? How about for a taxi ride?
EZ-Pass, the electronic tolling company implemented extensively on the East Coast, has done wonders to reduce traffic congestion and increase traffic flow.
Driving down I-95 on the East Coast of the United States, drivers rarely notice their financial transaction with the state’s tolling agencies. The transactions are seamless.
The Uber app enables me to travel without my wallet. I can forget about payment on my trip, free up my mental bandwidth and time for higher-priority tasks. The entire process is digitized and, by extension, automated and integrated into Uber’s platform (Note: This incredible convenience many times causes me to accidentally walk out of taxi cabs without paying!).
In January 2018, we saw the success of the first cutting-edge, AI-powered Amazon Go store open in Seattle, Washington. The store marked a new era in remittance and transactions. Gone are the days of carrying credit cards and cash, and gone are the cash registers. And now, on the heals of these early ‘beta-tests’, Amazon is considering opening as many as 3,000 of these cashierless stores by 2023.
Amazon Go stores use AI algorithms that watch various video feeds (from advanced cameras) throughout the store to identify who picks up groceries, exactly what products they select, and how much to charge that person when they walk out of the store. It’s a grab and go experience.
Let’s extrapolate the notion of seamless, integrated payment systems from Amazon Go and Uber’s removal of post-ride payment to the rest of our day-to-day experience.
Imagine this near future:
As you near the front door of your home, your AI assistant summons a self-driving Uber that takes you to the Hyperloop station (after all, you work in L.A. but live in San Francisco).
At the station, you board your pod, without noticing that your ticket purchase was settled via a wireless payment checkpoint.
After work, you stop at the Amazon Go and pick up dinner. Your virtual AI assistant passes your Amazon account information to the store’s payment checkpoint, as the store’s cameras and sensors track you, your cart and charge you auto-magically.
At home, unbeknownst to you, your AI has already restocked your fridge and pantry with whatever items you failed to pick up at the Amazon Go.
Once we remove the actively transacting aspect of finance, what else becomes possible?
Top Conclusions
Extraordinary transformations are happening in the finance world. We’ve only scratched the surface of the fintech revolution. All of these transformative financial technologies require high-fidelity assurance, robust insurance, and a mechanism for storing value.
I’ll dive into each of these other facets of financial services in future articles.
For now, thanks to coming global communication networks being deployed on 5G, Alphabet’s LUNE, SpaceX’s Starlink and OneWeb, by 2024, nearly all 8 billion people on Earth will be online.
Once connected, these new minds, entrepreneurs, and customers need access to money and financial services to meaningfully participate in the world economy.
By connecting lenders and borrowers around the globe, decentralized lending drives down global interest rates, increases global financial market participation, and enables economic opportunity to the billions of people who are about to come online.
We’re living in the most abundant time in human history, and fintech is just getting started.
Join Me
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Novikov Aleksey / Shutterstock.com Continue reading
#433689 The Rise of Dataism: A Threat to Freedom ...
What would happen if we made all of our data public—everything from wearables monitoring our biometrics, all the way to smartphones monitoring our location, our social media activity, and even our internet search history?
Would such insights into our lives simply provide companies and politicians with greater power to invade our privacy and manipulate us by using our psychological profiles against us?
A burgeoning new philosophy called dataism doesn’t think so.
In fact, this trending ideology believes that liberating the flow of data is the supreme value of the universe, and that it could be the key to unleashing the greatest scientific revolution in the history of humanity.
What Is Dataism?
First mentioned by David Brooks in his 2013 New York Times article “The Philosophy of Data,” dataism is an ethical system that has been most heavily explored and popularized by renowned historian, Yuval Noah Harari.
In his 2016 book Homo Deus, Harari described dataism as a new form of religion that celebrates the growing importance of big data.
Its core belief centers around the idea that the universe gives greater value and support to systems, individuals, and societies that contribute most heavily and efficiently to data processing. In an interview with Wired, Harari stated, “Humans were special and important because up until now they were the most sophisticated data processing system in the universe, but this is no longer the case.”
Now, big data and machine learning are proving themselves more sophisticated, and dataists believe we should hand over as much information and power to these algorithms as possible, allowing the free flow of data to unlock innovation and progress unlike anything we’ve ever seen before.
Pros: Progress and Personal Growth
When you let data run freely, it’s bound to be mixed and matched in new ways that inevitably spark progress. And as we enter the exponential future where every person is constantly connected and sharing their data, the potential for such collaborative epiphanies becomes even greater.
We can already see important increases in quality of life thanks to companies like Google. With Google Maps on your phone, your position is constantly updating on their servers. This information, combined with everyone else on the planet using a phone with Google Maps, allows your phone to inform you of traffic conditions. Based on the speed and location of nearby phones, Google can reroute you to less congested areas or help you avoid accidents. And since you trust that these algorithms have more data than you, you gladly hand over your power to them, following your GPS’s directions rather than your own.
We can do the same sort of thing with our bodies.
Imagine, for instance, a world where each person has biosensors in their bloodstreams—a not unlikely or distant possibility when considering diabetic people already wear insulin pumps that constantly monitor their blood sugar levels. And let’s assume this data was freely shared to the world.
Now imagine a virus like Zika or the Bird Flu breaks out. Thanks to this technology, the odd change in biodata coming from a particular region flags an artificial intelligence that feeds data to the CDC (Center for Disease Control and Prevention). Recognizing that a pandemic could be possible, AIs begin 3D printing vaccines on-demand, predicting the number of people who may be afflicted. When our personal AIs tell us the locations of the spreading epidemic and to take the vaccine it just delivered by drone to our homes, are we likely to follow its instructions? Almost certainly—and if so, it’s likely millions, if not billions, of lives will have been saved.
But to quickly create such vaccines, we’ll also need to liberate research.
Currently, universities and companies seeking to benefit humankind with medical solutions have to pay extensively to organize clinical trials and to find people who match their needs. But if all our biodata was freely aggregated, perhaps they could simply say “monitor all people living with cancer” to an AI, and thanks to the constant stream of data coming in from the world’s population, a machine learning program may easily be able to detect a pattern and create a cure.
As always in research, the more sample data you have, the higher the chance that such patterns will emerge. If data is flowing freely, then anyone in the world can suddenly decide they have a hunch they want to explore, and without having to spend months and months of time and money hunting down the data, they can simply test their hypothesis.
Whether garage tinkerers, at-home scientists, or PhD students—an abundance of free data allows for science to progress unhindered, each person able to operate without being slowed by lack of data. And any progress they make is immediately liberated, becoming free data shared with anyone else that may find a use for it.
Any individual with a curious passion would have the entire world’s data at their fingertips, empowering every one of us to become an expert in any subject that inspires us. Expertise we can then share back into the data stream—a positive feedback loop spearheading progress for the entirety of humanity’s knowledge.
Such exponential gains represent a dataism utopia.
Unfortunately, our current incentives and economy also show us the tragic failures of this model.
As Harari has pointed out, the rise of datism means that “humanism is now facing an existential challenge and the idea of ‘free will’ is under threat.”
Cons: Manipulation and Extortion
In 2017, The Economist declared that data was the most valuable resource on the planet—even more valuable than oil.
Perhaps this is because data is ‘priceless’: it represents understanding, and understanding represents control. And so, in the world of advertising and politics, having data on your consumers and voters gives you an incredible advantage.
This was evidenced by the Cambridge Analytica scandal, in which it’s believed that Donald Trump and the architects of Brexit leveraged users’ Facebook data to create psychological profiles that enabled them to manipulate the masses.
How powerful are these psychological models?
A team who built a model similar to that used by Cambridge Analytica said their model could understand someone as well as a coworker with access to only 10 Facebook likes. With 70 likes they could know them as well as a friend might, 150 likes to match their parents’ understanding, and at 300 likes they could even come to know someone better than their lovers. With more likes, they could even come to know someone better than that person knows themselves.
Proceeding With Caution
In a capitalist democracy, do we want businesses and politicians to know us better than we know ourselves?
In spite of the remarkable benefits that may result for our species by freely giving away our information, do we run the risk of that data being used to exploit and manipulate the masses towards a future without free will, where our daily lives are puppeteered by those who own our data?
It’s extremely possible.
And it’s for this reason that one of the most important conversations we’ll have as a species centers around data ownership: do we just give ownership of the data back to the users, allowing them to choose who to sell or freely give their data to? Or will that simply deter the entrepreneurial drive and cause all of the free services we use today, like Google Search and Facebook, to begin charging inaccessible prices? How much are we willing to pay for our freedom? And how much do we actually care?
If recent history has taught us anything, it’s that humans are willing to give up more privacy than they like to think. Fifteen years ago, it would have been crazy to suggest we’d all allow ourselves to be tracked by our cars, phones, and daily check-ins to our favorite neighborhood locations; but now most of us see it as a worthwhile trade for optimized commutes and dating. As we continue navigating that fine line between exploitation and innovation into a more technological future, what other trade-offs might we be willing to make?
Image Credit: graphicINmotion / Shutterstock.com Continue reading