Tag Archives: first
#432893 These 4 Tech Trends Are Driving Us ...
From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.
Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.
Today, the process of feeding humanity is extremely inefficient.
If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?
In this post we’ll cover:
Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0
Let’s dive in.
Vertical Farming
Where we grow our food…
The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.
Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.
Delocalized farming will minimize travel costs at the same time that it maximizes freshness.
Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.
Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.
LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.
At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.
Such precision farming can generate yields that are 200% to 400% above normal.
Next let’s explore how we can precision-engineer the genetic properties of the plant itself.
CRISPR and Genetically Engineered Foods
What food do we grow?
A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.
CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.
Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.
Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.
CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.
Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.
Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.
CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.
Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.
The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.
Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.
Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.
Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.
Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.
We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.
JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.
Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.
As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.
Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.
The next question to answer is who will be producing the food?
Let’s look back at how farming evolved through history.
Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.
Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.
Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.
Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.
An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.
Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.
Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.
For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.
The urban farming incubator raised a $5.4 million seed funding round in August 2017.
Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.
One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.
Conclusion
Technology is driving food abundance.
We’re already seeing food become demonetized, as the graph below shows.
From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.
The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.
We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.
And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.
What an extraordinary time to be alive.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.
Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Nejron Photo / Shutterstock.com Continue reading
#432646 How Fukushima Changed Japanese Robotics ...
In March 2011, Japan was hit by a catastrophic earthquake that triggered a terrible tsunami. Thousands were killed and billions of dollars of damage was done in one of the worst disasters of modern times. For a few perilous weeks, though, the eyes of the world were focused on the Fukushima Daiichi nuclear power plant. Its safety systems were unable to cope with the tsunami damage, and there were widespread fears of another catastrophic meltdown that could spread radiation over several countries, like the Chernobyl disaster in the 1980s. A heroic effort that included dumping seawater into the reactor core prevented an even bigger catastrophe. As it is, a hundred thousand people are still evacuated from the area, and it will likely take many years and hundreds of billions of dollars before the region is safe.
Because radiation is so dangerous to humans, the natural solution to the Fukushima disaster was to send in robots to monitor levels of radiation and attempt to begin the clean-up process. The techno-optimists in Japan had discovered a challenge, deep in the heart of that reactor core, that even their optimism could not solve. The radiation fried the circuits of the robots that were sent in, even those specifically designed and built to deal with the Fukushima catastrophe. The power plant slowly became a vast robot graveyard. While some robots initially saw success in measuring radiation levels around the plant—and, recently, a robot was able to identify the melted uranium fuel at the heart of the disaster—hopes of them playing a substantial role in the clean-up are starting to diminish.
In Tokyo’s neon Shibuya district, it can sometimes seem like it’s brighter at night than it is during the daytime. In karaoke booths on the twelfth floor—because everything is on the twelfth floor—overlooking the brightly-lit streets, businessmen unwind by blasting out pop hits. It can feel like the most artificial place on Earth; your senses are dazzled by the futuristic techno-optimism. Stock footage of the area has become symbolic of futurism and modernity.
Japan has had a reputation for being a nation of futurists for a long time. We’ve already described how tech giant Softbank, headed by visionary founder Masayoshi Son, is investing billions in a technological future, including plans for the world’s largest solar farm.
When Google sold pioneering robotics company Boston Dynamics in 2017, Softbank added it to their portfolio, alongside the famous Nao and Pepper robots. Some may think that Son is taking a gamble in pursuing a robotics project even Google couldn’t succeed in, but this is a man who lost nearly everything in the dot-com crash of 2000. The fact that even this reversal didn’t dent his optimism and faith in technology is telling. But how long can it last?
The failure of Japan’s robots to deal with the immense challenge of Fukushima has sparked something of a crisis of conscience within the industry. Disaster response is an obvious stepping-stone technology for robots. Initially, producing a humanoid robot will be very costly, and the robot will be less capable than a human; building a robot to wait tables might not be particularly economical yet. Building a robot to do jobs that are too dangerous for humans is far more viable. Yet, at Fukushima, in one of the most advanced nations in the world, many of the robots weren’t up to the task.
Nowhere was this crisis more felt than Honda; the company had developed ASIMO, which stunned the world in 2000 and continues to fascinate as an iconic humanoid robot. Despite all this technological advancement, however, Honda knew that ASIMO was still too unreliable for the real world.
It was Fukushima that triggered a sea-change in Honda’s approach to robotics. Two years after the disaster, there were rumblings that Honda was developing a disaster robot, and in October 2017, the prototype was revealed to the public for the first time. It’s not yet ready for deployment in disaster zones, however. Interestingly, the creators chose not to give it dexterous hands but instead to assume that remotely-operated tools fitted to the robot would be a better solution for the range of circumstances it might encounter.
This shift in focus for humanoid robots away from entertainment and amusement like ASIMO, and towards being practically useful, has been mirrored across the world.
In 2015, also inspired by the Fukushima disaster and the lack of disaster-ready robots, the DARPA Robotics Challenge tested humanoid robots with a range of tasks that might be needed in emergency response, such as driving cars, opening doors, and climbing stairs. The Terminator-like ATLAS robot from Boston Dynamics, alongside Korean robot HUBO, took many of the plaudits, and CHIMP also put in an impressive display by being able to right itself after falling.
Yet the DARPA Robotics Challenge showed us just how far the robots are from truly being as useful as we’d like, or maybe even as we would imagine. Many robots took hours to complete the tasks, which were highly idealized to suit them. Climbing stairs proved a particular challenge. Those who watched were more likely to see a robot that had fallen over, struggling to get up, rather than heroic superbots striding in to save the day. The “striding” proved a particular problem, with the fastest robot HUBO managing this by resorting to wheels in its knees when the legs weren’t necessary.
Fukushima may have brought a sea-change over futuristic Japan, but before robots will really begin to enter our everyday lives, they will need to prove their worth. In the interim, aerial drone robots designed to examine infrastructure damage after disasters may well see earlier deployment and more success.
It’s a considerable challenge.
Building a humanoid robot is expensive; if these multi-million-dollar machines can’t help in a crisis, people may begin to question the worth of investing in them in the first place (unless your aim is just to make viral videos). This could lead to a further crisis of confidence among the Japanese, who are starting to rely on humanoid robotics as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.
But if they continue to fail when put to the test, that will raise serious concerns. In Tokyo’s Akihabara district, you can see all kinds of flash robotic toys for sale in the neon-lit superstores, and dancing, acting robots like Robothespian can entertain crowds all over the world. But if we want these machines to be anything more than toys—partners, helpers, even saviors—more work needs to be done.
At the same time, those who participated in the DARPA Robotics Challenge in 2015 won’t be too concerned if people were underwhelmed by the performance of their disaster relief robots. Back in 2004, nearly every participant in the DARPA Grand Challenge crashed, caught fire, or failed on the starting line. To an outside observer, the whole thing would have seemed like an unmitigated disaster, and a pointless investment. What was the task in 2004? Developing a self-driving car. A lot can change in a decade.
Image Credit: MARCUSZ2527 / Shutterstock.com Continue reading
#432640 Artificial Intelligence And Education
Today, we frequently hear the term artificial intelligence. Furthermore, we experience its benefits in our everyday life, but how does it influence the educational system? Can AI improve its quality and boost the productivity of college or university students? Several years ago, its impact wasn’t as noticeable as it is today. Nevertheless, it shows a …
The post Artificial Intelligence And Education appeared first on TFOT. Continue reading