Tag Archives: first
#437466 How Future AI Could Recognize a Kangaroo ...
AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.
For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?
A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.
Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.
It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.
LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?
The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).
“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.
If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.
The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.
To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.
The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.
Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.
While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.
One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.
LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.
Image Credit: pen_ash from Pixabay Continue reading
#437451 Robot swarms follow instructions to ...
What if you could instruct a swarm of robots to paint a picture? The concept may sound far-fetched, but a recent study in open-access journal Frontiers in Robotics and AI has shown that it is possible. The robots in question move about a canvas leaving color trails in their wake, and in a first for robot-created art, an artist can select areas of the canvas to be painted a certain color and the robot team will oblige in real time. The technique illustrates the potential of robotics in creating art, and could be an interesting tool for artists. Continue reading
#437373 Microsoft’s New Deepfake Detector Puts ...
The upcoming US presidential election seems set to be something of a mess—to put it lightly. Covid-19 will likely deter millions from voting in person, and mail-in voting isn’t shaping up to be much more promising. This all comes at a time when political tensions are running higher than they have in decades, issues that shouldn’t be political (like mask-wearing) have become highly politicized, and Americans are dramatically divided along party lines.
So the last thing we need right now is yet another wrench in the spokes of democracy, in the form of disinformation; we all saw how that played out in 2016, and it wasn’t pretty. For the record, disinformation purposely misleads people, while misinformation is simply inaccurate, but without malicious intent. While there’s not a ton tech can do to make people feel safe at crowded polling stations or up the Postal Service’s budget, tech can help with disinformation, and Microsoft is trying to do so.
On Tuesday the company released two new tools designed to combat disinformation, described in a blog post by VP of Customer Security and Trust Tom Burt and Chief Scientific Officer Eric Horvitz.
The first is Microsoft Video Authenticator, which is made to detect deepfakes. In case you’re not familiar with this wicked byproduct of AI progress, “deepfakes” refers to audio or visual files made using artificial intelligence that can manipulate peoples’ voices or likenesses to make it look like they said things they didn’t. Editing a video to string together words and form a sentence someone didn’t say doesn’t count as a deepfake; though there’s manipulation involved, you don’t need a neural network and you’re not generating any original content or footage.
The Authenticator analyzes videos or images and tells users the percentage chance that they’ve been artificially manipulated. For videos, the tool can even analyze individual frames in real time.
Deepfake videos are made by feeding hundreds of hours of video of someone into a neural network, “teaching” the network the minutiae of the person’s voice, pronunciation, mannerisms, gestures, etc. It’s like when you do an imitation of your annoying coworker from accounting, complete with mimicking the way he makes every sentence sound like a question and his eyes widen when he talks about complex spreadsheets. You’ve spent hours—no, months—in his presence and have his personality quirks down pat. An AI algorithm that produces deepfakes needs to learn those same quirks, and more, about whoever the creator’s target is.
Given enough real information and examples, the algorithm can then generate its own fake footage, with deepfake creators using computer graphics and manually tweaking the output to make it as realistic as possible.
The scariest part? To make a deepfake, you don’t need a fancy computer or even a ton of knowledge about software. There are open-source programs people can access for free online, and as far as finding video footage of famous people—well, we’ve got YouTube to thank for how easy that is.
Microsoft’s Video Authenticator can detect the blending boundary of a deepfake and subtle fading or greyscale elements that the human eye may not be able to see.
In the blog post, Burt and Horvitz point out that as time goes by, deepfakes are only going to get better and become harder to detect; after all, they’re generated by neural networks that are continuously learning from and improving themselves.
Microsoft’s counter-tactic is to come in from the opposite angle, that is, being able to confirm beyond doubt that a video, image, or piece of news is real (I mean, can McDonald’s fries cure baldness? Did a seal slap a kayaker in the face with an octopus? Never has it been so imperative that the world know the truth).
A tool built into Microsoft Azure, the company’s cloud computing service, lets content producers add digital hashes and certificates to their content, and a reader (which can be used as a browser extension) checks the certificates and matches the hashes to indicate the content is authentic.
Finally, Microsoft also launched an interactive “Spot the Deepfake” quiz it developed in collaboration with the University of Washington’s Center for an Informed Public, deepfake detection company Sensity, and USA Today. The quiz is intended to help people “learn about synthetic media, develop critical media literacy skills, and gain awareness of the impact of synthetic media on democracy.”
The impact Microsoft’s new tools will have remains to be seen—but hey, we’re glad they’re trying. And they’re not alone; Facebook, Twitter, and YouTube have all taken steps to ban and remove deepfakes from their sites. The AI Foundation’s Reality Defender uses synthetic media detection algorithms to identify fake content. There’s even a coalition of big tech companies teaming up to try to fight election interference.
One thing is for sure: between a global pandemic, widespread protests and riots, mass unemployment, a hobbled economy, and the disinformation that’s remained rife through it all, we’re going to need all the help we can get to make it through not just the election, but the rest of the conga-line-of-catastrophes year that is 2020.
Image Credit: Darius Bashar on Unsplash Continue reading