Tag Archives: field

#438769 Will Robots Make Good Friends? ...

In the 2012 film Robot and Frank, the protagonist, a retired cat burglar named Frank, is suffering the early symptoms of dementia. Concerned and guilty, his son buys him a “home robot” that can talk, do household chores like cooking and cleaning, and remind Frank to take his medicine. It’s a robot the likes of which we’re getting closer to building in the real world.

The film follows Frank, who is initially appalled by the idea of living with a robot, as he gradually begins to see the robot as both functionally useful and socially companionable. The film ends with a clear bond between man and machine, such that Frank is protective of the robot when the pair of them run into trouble.

This is, of course, a fictional story, but it challenges us to explore different kinds of human-to-robot bonds. My recent research on human-robot relationships examines this topic in detail, looking beyond sex robots and robot love affairs to examine that most profound and meaningful of relationships: friendship.

My colleague and I identified some potential risks, like the abandonment of human friends for robotic ones, but we also found several scenarios where robotic companionship can constructively augment people’s lives, leading to friendships that are directly comparable to human-to-human relationships.

Philosophy of Friendship
The robotics philosopher John Danaher sets a very high bar for what friendship means. His starting point is the “true” friendship first described by the Greek philosopher Aristotle, which saw an ideal friendship as premised on mutual good will, admiration, and shared values. In these terms, friendship is about a partnership of equals.

Building a robot that can satisfy Aristotle’s criteria is a substantial technical challenge and is some considerable way off, as Danaher himself admits. Robots that may seem to be getting close, such as Hanson Robotics’ Sophia, base their behavior on a library of pre-prepared responses: a humanoid chatbot, rather than a conversational equal. Anyone who’s had a testing back-and-forth with Alexa or Siri will know AI still has some way to go in this regard.

Aristotle also talked about other forms of “imperfect” friendship, such as “utilitarian” and “pleasure” friendships, which are considered inferior to true friendship because they don’t require symmetrical bonding and are often to one party’s unequal benefit. This form of friendship sets a relatively very low bar which some robots, like “sexbots” and robotic pets, clearly already meet.

Artificial Amigos
For some, relating to robots is just a natural extension of relating to other things in our world, like people, pets, and possessions. Psychologists have even observed how people respond naturally and socially towards media artefacts like computers and televisions. Humanoid robots, you’d have thought, are more personable than your home PC.

However, the field of “robot ethics” is far from unanimous on whether we can—or should— develop any form of friendship with robots. For an influential group of UK researchers who charted a set of “ethical principles of robotics,” human-robot “companionship” is an oxymoron, and to market robots as having social capabilities is dishonest and should be treated with caution, if not alarm. For these researchers, wasting emotional energy on entities that can only simulate emotions will always be less rewarding than forming human-to-human bonds.

But people are already developing bonds with basic robots, like vacuum-cleaning and lawn-trimming machines that can be bought for less than the price of a dishwasher. A surprisingly large number of people give these robots pet names—something they don’t do with their dishwashers. Some even take their cleaning robots on holiday.

Other evidence of emotional bonds with robots include the Shinto blessing ceremony for Sony Aibo robot dogs that were dismantled for spare parts, and the squad of US troops who fired a 21-gun salute, and awarded medals, to a bomb-disposal robot named “Boomer” after it was destroyed in action.

These stories, and the psychological evidence we have so far, make clear that we can extend emotional connections to things that are very different to us, even when we know they are manufactured and pre-programmed. But do those connections constitute a friendship comparable to that shared between humans?

True Friendship?
A colleague and I recently reviewed the extensive literature on human-to-human relationships to try to understand how, and if, the concepts we found could apply to bonds we might form with robots. We found evidence that many coveted human-to-human friendships do not in fact live up to Aristotle’s ideal.

We noted a wide range of human-to-human relationships, from relatives and lovers to parents, carers, service providers, and the intense (but unfortunately one-way) relationships we maintain with our celebrity heroes. Few of these relationships could be described as completely equal and, crucially, they are all destined to evolve over time.

All this means that expecting robots to form Aristotelian bonds with us is to set a standard even human relationships fail to live up to. We also observed forms of social connectedness that are rewarding and satisfying and yet are far from the ideal friendship outlined by the Greek philosopher.

We know that social interaction is rewarding in its own right, and something that, as social mammals, humans have a strong need for. It seems probable that relationships with robots could help to address the deep-seated urge we all feel for social connection—like providing physical comfort, emotional support, and enjoyable social exchanges—currently provided by other humans.

Our paper also discussed some potential risks. These arise particularly in settings where interaction with a robot could come to replace interaction with people, or where people are denied a choice as to whether they interact with a person or a robot—in a care setting, for instance.

These are important concerns, but they’re possibilities and not inevitabilities. In the literature we reviewed we actually found evidence of the opposite effect: robots acting to scaffold social interactions with others, acting as ice-breakers in groups, and helping people to improve their social skills or to boost their self-esteem.

It appears likely that, as time progresses, many of us will simply follow Frank’s path towards acceptance: scoffing at first, before settling into the idea that robots can make surprisingly good companions. Our research suggests that’s already happening—though perhaps not in a way of which Aristotle would have approved.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Andy Kelly on Unsplash Continue reading

Posted in Human Robots

#438074 A new bio-inspired joint model to design ...

Recent advances in the field of robotics have enabled the fabrication of increasingly sophisticated robotic limbs and exoskeletons. Robotic exoskeletons are essentially wearable 'shells' made of different robotic parts. Exoskeletons can improve the strength, capabilities and stability of users, helping them to tackle heavy physical tasks with less effort or aiding their rehabilitation after accidents. Continue reading

Posted in Human Robots

#437990 Video Friday: Record-Breaking Drone Show ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.

The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.

[ Bio-Inspired and Medical Robotics Lab ]

How TRI trains its robots.

[ TRI ]

The only thing more satisfying than one SCARA robot is two SCARA robots working together.

[ Fanuc ]

I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.

[ Shinoda & Makino Lab ]

Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.

[ Nature ]

A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).

[ Xinhua ]

Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.

[ University of Michigan ] via [ Fetch Robotics ]

This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.

And here's a video report on the SubT Urban Beta Course performance:

[ CERBERUS ]

Congrats to Energy Robotics on 2 million euros in seed funding!

[ Energy Robotics ]

Thanks Stefan!

In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.

HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.

[ HEBI Robotics ]

Thanks Hardik!

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.

[ Paper ]

Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.

[ Science of Soft Robots ]

A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.

[ Clearpath Robotics ]

Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.

[ Northeastern ]

Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.

[ Microsoft Research ]

A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.

[ COSTAR ] Continue reading

Posted in Human Robots

#437971 Video Friday: Teleport Yourself Into ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Samsung announced some new prototype robots at CES this week. It's a fancy video, but my guess is that the actual autonomy here is minimal at best.

[ Samsung ]

Some very impressive reactive agility from Ghost Robotics' little quadruped.

[ Ghost Robotics ]

Toyota Research Institute (TRI) is researching how to bring together the instinctive reflexes of professional drivers and automated driving technology that uses the calculated foresight of a supercomputer. Using a Toyota GR Supra, TRI will learn from some of the most skilled drivers in the world to develop sophisticated vehicle control algorithms. The project’s goal is to design a new level of active safety technology for the Toyota Guardian™ approach of amplifying human driving abilities and helping keep people safe.

[ TRI ]

The end of this video features one of the most satisfying-sounding drone outtakes I've ever heard,

[ ASL ]

Reachy can now run the first humanoid VR teleoperation app available on the market. This app allows you to place yourself in the body of a humanoid robot, in VR, wherever you are in the world, to remotely operate it and carry out complex tasks. With this new functionality, Reachy is able to learn from the demonstration of the humans who control it, which makes application development even easier.

[ Pollen Robotics ]

Thanks Elsa!

Boston Dynamics has inspired some dancing robot videos recently, including this from Marco Tempest.

[ Marco Tempest ]

MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.

I like the minimalist approach. I dislike the “it’s like you’re interacting with a living pet” bit.

[ Kickstarter ]

There's a short gif of these warehouse robots going around, but here's the full video.

[ BionicHIVE ]

Vstone's Robovie-Z proves that you don't need fancy hardware for effective teleworking.

[ Vstone ]

All dual-arm robots are required, at some point, to play pool.

[ ABB ]

Volkswagen Group Components gives us a first glimpse of the real prototypes. This is one of the visionary charging concepts that Volkswagen hopes will expand the charging infrastructure over the next few years. Its task: fully autonomous charging of vehicles in restricted parking areas, like underground car parks.

To charge several vehicles at the same time, the mobile robot moves a trailer, essentially a mobile energy storage unit, to the vehicle, connects it up and then uses this energy storage unit to charge the battery of the electric vehicle. The energy storage unit stays with the vehicle during the charging process. In the meantime, the robot charges other electric vehicles.

[ Volkswagen ]

I've got a lot of questions about Moley Robotics' kitchen. But I would immediately point out that the system appears to do no prep work, which (at least for me) is the time-consuming and stressful part of cooking.

[ Moley Robotics ]

Blueswarm is a collective of fish-inspired miniature underwater robots that can achieve a wide variety of 3D collective behaviors – synchrony, aggregation/dispersion, milling, search – using only implicit communication mediated through the production and sensing of blue light. We envision this platform for investigating collective AI, underwater coordination, and fish-inspired locomotion and sensing.

[ Science Robotics ]

A team of Malaysian researchers are transforming pineapple leaves into strong materials that can be used to build frames for unmanned aircraft or drones.

[ Reuters ]

The future of facility disinfecting is here, protect your customers, and create peace of mind. Our drone sanitization spraying technology is up to 100% more efficient and effective than conventional manual spray sterilization processes.

[ Draganfly ]

Robots are no long a future technology, as small robots can be purchased today to be utilized for educational purposes. See what goes into making a modern robot come to life.

[ Huggbees ]

How does a robot dog learn how to dance? Adam and the Tested team examine and dive into Boston Dynamics' Choreographer software that was behind Spot's recent viral dancing video.

[ Tested ]

For years, engineers have had to deal with “the tyranny of the fairing,” that anything you want to send into space has to fit into the protective nosecone on top of the rocket. A field of advanced design has been looking for new ways to improve our engineering, using the centuries-old artform to dream bigger.

[ JPL ] Continue reading

Posted in Human Robots

#437964 How Explainable Artificial Intelligence ...

The field of artificial intelligence has created computers that can drive cars, synthesize chemical compounds, fold proteins, and detect high-energy particles at a superhuman level.

However, these AI algorithms cannot explain the thought processes behind their decisions. A computer that masters protein folding and also tells researchers more about the rules of biology is much more useful than a computer that folds proteins without explanation.

Therefore, AI researchers like me are now turning our efforts toward developing AI algorithms that can explain themselves in a manner that humans can understand. If we can do this, I believe that AI will be able to uncover and teach people new facts about the world that have not yet been discovered, leading to new innovations.

Learning From Experience
One field of AI, called reinforcement learning, studies how computers can learn from their own experiences. In reinforcement learning, an AI explores the world, receiving positive or negative feedback based on its actions.

This approach has led to algorithms that have independently learned to play chess at a superhuman level and prove mathematical theorems without any human guidance. In my work as an AI researcher, I use reinforcement learning to create AI algorithms that learn how to solve puzzles such as the Rubik’s Cube.

Through reinforcement learning, AIs are independently learning to solve problems that even humans struggle to figure out. This has got me and many other researchers thinking less about what AI can learn and more about what humans can learn from AI. A computer that can solve the Rubik’s Cube should be able to teach people how to solve it, too.

Peering Into the Black Box
Unfortunately, the minds of superhuman AIs are currently out of reach to us humans. AIs make terrible teachers and are what we in the computer science world call “black boxes.”

AI simply spits out solutions without giving reasons for its solutions. Computer scientists have been trying for decades to open this black box, and recent research has shown that many AI algorithms actually do think in ways that are similar to humans. For example, a computer trained to recognize animals will learn about different types of eyes and ears and will put this information together to correctly identify the animal.

The effort to open up the black box is called explainable AI. My research group at the AI Institute at the University of South Carolina is interested in developing explainable AI. To accomplish this, we work heavily with the Rubik’s Cube.

The Rubik’s Cube is basically a pathfinding problem: Find a path from point A—a scrambled Rubik’s Cube—to point B—a solved Rubik’s Cube. Other pathfinding problems include navigation, theorem proving and chemical synthesis.

My lab has set up a website where anyone can see how our AI algorithm solves the Rubik’s Cube; however, a person would be hard-pressed to learn how to solve the cube from this website. This is because the computer cannot tell you the logic behind its solutions.

Solutions to the Rubik’s Cube can be broken down into a few generalized steps—the first step, for example, could be to form a cross while the second step could be to put the corner pieces in place. While the Rubik’s Cube itself has over 10 to the 19th power possible combinations, a generalized step-by-step guide is very easy to remember and is applicable in many different scenarios.

Approaching a problem by breaking it down into steps is often the default manner in which people explain things to one another. The Rubik’s Cube naturally fits into this step-by-step framework, which gives us the opportunity to open the black box of our algorithm more easily. Creating AI algorithms that have this ability could allow people to collaborate with AI and break down a wide variety of complex problems into easy-to-understand steps.

A step-by-step refinement approach can make it easier for humans to understand why AIs do the things they do. Forest Agostinelli, CC BY-ND

Collaboration Leads to Innovation
Our process starts with using one’s own intuition to define a step-by-step plan thought to potentially solve a complex problem. The algorithm then looks at each individual step and gives feedback about which steps are possible, which are impossible and ways the plan could be improved. The human then refines the initial plan using the advice from the AI, and the process repeats until the problem is solved. The hope is that the person and the AI will eventually converge to a kind of mutual understanding.

Currently, our algorithm is able to consider a human plan for solving the Rubik’s Cube, suggest improvements to the plan, recognize plans that do not work and find alternatives that do. In doing so, it gives feedback that leads to a step-by-step plan for solving the Rubik’s Cube that a person can understand. Our team’s next step is to build an intuitive interface that will allow our algorithm to teach people how to solve the Rubik’s Cube. Our hope is to generalize this approach to a wide range of pathfinding problems.

People are intuitive in a way unmatched by any AI, but machines are far better in their computational power and algorithmic rigor. This back and forth between man and machine utilizes the strengths from both. I believe this type of collaboration will shed light on previously unsolved problems in everything from chemistry to mathematics, leading to new solutions, intuitions and innovations that may have, otherwise, been out of reach.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Serg Antonov / Unsplash Continue reading

Posted in Human Robots