Tag Archives: fiction
#435614 3 Easy Ways to Evaluate AI Claims
When every other tech startup claims to use artificial intelligence, it can be tough to figure out if an AI service or product works as advertised. In the midst of the AI “gold rush,” how can you separate the nuggets from the fool’s gold?
There’s no shortage of cautionary tales involving overhyped AI claims. And applying AI technologies to health care, education, and law enforcement mean that getting it wrong can have real consequences for society—not just for investors who bet on the wrong unicorn.
So IEEE Spectrum asked experts to share their tips for how to identify AI hype in press releases, news articles, research papers, and IPO filings.
“It can be tricky, because I think the people who are out there selling the AI hype—selling this AI snake oil—are getting more sophisticated over time,” says Tim Hwang, director of the Harvard-MIT Ethics and Governance of AI Initiative.
The term “AI” is perhaps most frequently used to describe machine learning algorithms (and deep learning algorithms, which require even less human guidance) that analyze huge amounts of data and make predictions based on patterns that humans might miss. These popular forms of AI are mostly suited to specialized tasks, such as automatically recognizing certain objects within photos. For that reason, they are sometimes described as “weak” or “narrow” AI.
Some researchers and thought leaders like to talk about the idea of “artificial general intelligence” or “strong AI” that has human-level capacity and flexibility to handle many diverse intellectual tasks. But for now, this type of AI remains firmly in the realm of science fiction and is far from being realized in the real world.
“AI has no well-defined meaning and many so-called AI companies are simply trying to take advantage of the buzz around that term,” says Arvind Narayanan, a computer scientist at Princeton University. “Companies have even been caught claiming to use AI when, in fact, the task is done by human workers.”
Here are three ways to recognize AI hype.
Look for Buzzwords
One red flag is what Hwang calls the “hype salad.” This means stringing together the term “AI” with many other tech buzzwords such as “blockchain” or “Internet of Things.” That doesn’t automatically disqualify the technology, but spotting a high volume of buzzwords in a post, pitch, or presentation should raise questions about what exactly the company or individual has developed.
Other experts agree that strings of buzzwords can be a red flag. That’s especially true if the buzzwords are never really explained in technical detail, and are simply tossed around as vague, poorly-defined terms, says Marzyeh Ghassemi, a computer scientist and biomedical engineer at the University of Toronto in Canada.
“I think that if it looks like a Google search—picture ‘interpretable blockchain AI deep learning medicine’—it's probably not high-quality work,” Ghassemi says.
Hwang also suggests mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” It’s a way of seeing whether an individual or organization is treating the technology like magic. If so—that’s another good reason to ask more questions about what exactly the AI technology involves.
And even the visual imagery used to illustrate AI claims can indicate that an individual or organization is overselling the technology.
“I think that a lot of the people who work on machine learning on a day-to-day basis are pretty humble about the technology, because they’re largely confronted with how frequently it just breaks and doesn't work,” Hwang says. “And so I think that if you see a company or someone representing AI as a Terminator head, or a big glowing HAL eye or something like that, I think it’s also worth asking some questions.”
Interrogate the Data
It can be hard to evaluate AI claims without any relevant expertise, says Ghassemi at the University of Toronto. Even experts need to know the technical details of the AI algorithm in question and have some access to the training data that shaped the AI model’s predictions. Still, savvy readers with some basic knowledge of applied statistics can search for red flags.
To start, readers can look for possible bias in training data based on small sample sizes or a skewed population that fails to reflect the broader population, Ghassemi says. After all, an AI model trained only on health data from white men would not necessarily achieve similar results for other populations of patients.
“For me, a red flag is not demonstrating deep knowledge of how your labels are defined.”
—Marzyeh Ghassemi, University of Toronto
How machine learning and deep learning models perform also depends on how well humans labeled the sample datasets use to train these programs. This task can be straightforward when labeling photos of cats versus dogs, but gets more complicated when assigning disease diagnoses to certain patient cases.
Medical experts frequently disagree with each other on diagnoses—which is why many patients seek a second opinion. Not surprisingly, this ambiguity can also affect the diagnostic labels that experts assign in training datasets. “For me, a red flag is not demonstrating deep knowledge of how your labels are defined,” Ghassemi says.
Such training data can also reflect the cultural stereotypes and biases of the humans who labeled the data, says Narayanan at Princeton University. Like Ghassemi, he recommends taking a hard look at exactly what the AI has learned: “A good way to start critically evaluating AI claims is by asking questions about the training data.”
Another red flag is presenting an AI system’s performance through a single accuracy figure without much explanation, Narayanan says. Claiming that an AI model achieves “99 percent” accuracy doesn’t mean much without knowing the baseline for comparison—such as whether other systems have already achieved 99 percent accuracy—or how well that accuracy holds up in situations beyond the training dataset.
Narayanan also emphasized the need to ask questions about an AI model’s false positive rate—the rate of making wrong predictions about the presence of a given condition. Even if the false positive rate of a hypothetical AI service is just one percent, that could have major consequences if that service ends up screening millions of people for cancer.
Readers can also consider whether using AI in a given situation offers any meaningful improvement compared to traditional statistical methods, says Clayton Aldern, a data scientist and journalist who serves as managing director for Caldern LLC. He gave the hypothetical example of a “super-duper-fancy deep learning model” that achieves a prediction accuracy of 89 percent, compared to a “little polynomial regression model” that achieves 86 percent on the same dataset.
“We're talking about a three-percentage-point increase on something that you learned about in Algebra 1,” Aldern says. “So is it worth the hype?”
Don’t Ignore the Drawbacks
The hype surrounding AI isn’t just about the technical merits of services and products driven by machine learning. Overblown claims about the beneficial impacts of AI technology—or vague promises to address ethical issues related to deploying it—should also raise red flags.
“If a company promises to use its tech ethically, it is important to question if its business model aligns with that promise,” Narayanan says. “Even if employees have noble intentions, it is unrealistic to expect the company as a whole to resist financial imperatives.”
One example might be a company with a business model that depends on leveraging customers’ personal data. Such companies “tend to make empty promises when it comes to privacy,” Narayanan says. And, if companies hire workers to produce training data, it’s also worth asking whether the companies treat those workers ethically.
The transparency—or lack thereof—about any AI claim can also be telling. A company or research group can minimize concerns by publishing technical claims in peer-reviewed journals or allowing credible third parties to evaluate their AI without giving away big intellectual property secrets, Narayanan says. Excessive secrecy is a big red flag.
With these strategies, you don’t need to be a computer engineer or data scientist to start thinking critically about AI claims. And, Narayanan says, the world needs many people from different backgrounds for societies to fully consider the real-world implications of AI.
Editor’s Note: The original version of this story misspelled Clayton Aldern’s last name as Alderton. Continue reading
#435308 Brain-Machine Interfaces Are Getting ...
Elon Musk grabbed a lot of attention with his July 16 announcement that his company Neuralink plans to implant electrodes into the brains of people with paralysis by next year. Their first goal is to create assistive technology to help people who can’t move or are unable to communicate.
If you haven’t been paying attention, brain-machine interfaces (BMIs) that allow people to control robotic arms with their thoughts might sound like science fiction. But science and engineering efforts have already turned it into reality.
In a few research labs around the world, scientists and physicians have been implanting devices into the brains of people who have lost the ability to control their arms or hands for over a decade. In our own research group at the University of Pittsburgh, we’ve enabled people with paralyzed arms and hands to control robotic arms that allow them to grasp and move objects with relative ease. They can even experience touch-like sensations from their own hand when the robot grasps objects.
At its core, a BMI is pretty straightforward. In your brain, microscopic cells called neurons are sending signals back and forth to each other all the time. Everything you think, do and feel as you interact with the world around you is the result of the activity of these 80 billion or so neurons.
If you implant a tiny wire very close to one of these neurons, you can record the electrical activity it generates and send it to a computer. Record enough of these signals from the right area of the brain and it becomes possible to control computers, robots, or anything else you might want, simply by thinking about moving. But doing this comes with tremendous technical challenges, especially if you want to record from hundreds or thousands of neurons.
What Neuralink Is Bringing to the Table
Elon Musk founded Neuralink in 2017, aiming to address these challenges and raise the bar for implanted neural interfaces.
Perhaps the most impressive aspect of Neuralink’s system is the breadth and depth of their approach. Building a BMI is inherently interdisciplinary, requiring expertise in electrode design and microfabrication, implantable materials, surgical methods, electronics, packaging, neuroscience, algorithms, medicine, regulatory issues, and more. Neuralink has created a team that spans most, if not all, of these areas.
With all of this expertise, Neuralink is undoubtedly moving the field forward, and improving their technology rapidly. Individually, many of the components of their system represent significant progress along predictable paths. For example, their electrodes, that they call threads, are very small and flexible; many researchers have tried to harness those properties to minimize the chance the brain’s immune response would reject the electrodes after insertion. Neuralink has also developed high-performance miniature electronics, another focus area for labs working on BMIs.
Often overlooked in academic settings, however, is how an entire system would be efficiently implanted in a brain.
Neuralink’s BMI requires brain surgery. This is because implanted electrodes that are in intimate contact with neurons will always outperform non-invasive electrodes where neurons are far away from the electrodes sitting outside the skull. So, a critical question becomes how to minimize the surgical challenges around getting the device into a brain.
Maybe the most impressive aspect of Neuralink’s announcement was that they created a 3,000-electrode neural interface where electrodes could be implanted at a rate of between 30 and 200 per minute. Each thread of electrodes is implanted by a sophisticated surgical robot that essentially acts like a sewing machine. This all happens while specifically avoiding blood vessels that blanket the surface of the brain. The robotics and imaging that enable this feat, with tight integration to the entire device, is striking.
Neuralink has thought through the challenge of developing a clinically viable BMI from beginning to end in a way that few groups have done, though they acknowledge that many challenges remain as they work towards getting this technology into human patients in the clinic.
Figuring Out What More Electrodes Gets You
The quest for implantable devices with thousands of electrodes is not only the domain of private companies. DARPA, the NIH BRAIN Initiative, and international consortiums are working on neurotechnologies for recording and stimulating in the brain with goals of tens of thousands of electrodes. But what might scientists do with the information from 1,000, 3,000, or maybe even 100,000 neurons?
At some level, devices with more electrodes might not actually be necessary to have a meaningful impact in people’s lives. Effective control of computers for access and communication, of robotic limbs to grasp and move objects as well as of paralyzed muscles is already happening—in people. And it has been for a number of years.
Since the 1990s, the Utah Array, which has just 100 electrodes and is manufactured by Blackrock Microsystems, has been a critical device in neuroscience and clinical research. This electrode array is FDA-cleared for temporary neural recording. Several research groups, including our own, have implanted Utah Arrays in people that lasted multiple years.
Currently, the biggest constraints are related to connectors, electronics, and system-level engineering, not the implanted electrode itself—although increasing the electrodes’ lifespan to more than five years would represent a significant advance. As those technical capabilities improve, it might turn out that the ability to accurately control computers and robots is limited more by scientists’ understanding of what the neurons are saying—that is, the neural code—than by the number of electrodes on the device.
Even the most capable implanted system, and maybe the most capable devices researchers can reasonably imagine, might fall short of the goal of actually augmenting skilled human performance. Nevertheless, Neuralink’s goal of creating better BMIs has the potential to improve the lives of people who can’t move or are unable to communicate. Right now, Musk’s vision of using BMIs to meld physical brains and intelligence with artificial ones is no more than a dream.
So, what does the future look like for Neuralink and other groups creating implantable BMIs? Devices with more electrodes that last longer and are connected to smaller and more powerful wireless electronics are essential. Better devices themselves, however, are insufficient. Continued public and private investment in companies and academic research labs, as well as innovative ways for these groups to work together to share technologies and data, will be necessary to truly advance scientists’ understanding of the brain and deliver on the promise of BMIs to improve peoples’ lives.
While researchers need to keep the future societal implications of advanced neurotechnologies in mind—there’s an essential role for ethicists and regulation—BMIs could be truly transformative as they help more people overcome limitations caused by injury or disease in the brain and body.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: UPMC/Pitt Health Sciences, / CC BY-NC-ND Continue reading
#435196 Avatar Love? New ‘Black Mirror’ ...
This week, the widely-anticipated fifth season of the dystopian series Black Mirror was released on Netflix. The storylines this season are less focused on far-out scenarios and increasingly aligned with current issues. With only three episodes, this season raises more questions than it answers, often leaving audiences bewildered.
The episode Smithereens explores our society’s crippling addiction to social media platforms and the monopoly they hold over our data. In Rachel, Jack and Ashley Too, we see the disruptive impact of technologies on the music and entertainment industry, and the price of fame for artists in the digital world. Like most Black Mirror episodes, these explore the sometimes disturbing implications of tech advancements on humanity.
But once again, in the midst of all the doom and gloom, the creators of the series leave us with a glimmer of hope. Aligned with Pride month, the episode Striking Vipers explores the impact of virtual reality on love, relationships, and sexual fluidity.
*The review contains a few spoilers.*
Striking Vipers
The first episode of the season, Striking Vipers may be one of the most thought-provoking episodes in Black Mirror history. Reminiscent of previous episodes San Junipero and Hang the DJ, the writers explore the potential for technology to transform human intimacy.
The episode tells the story of two old friends, Danny and Karl, whose friendship is reignited in an unconventional way. Karl unexpectedly appears at Danny’s 38th birthday and reintroduces him to the VR version of a game they used to play years before. In the game Striking Vipers X, each of the players is represented by an avatar of their choice in an uncanny digital reality. Following old tradition, Karl chooses to become the female fighter, Roxanne, and Danny takes on the role of the male fighter, Lance. The state-of-the-art VR headsets appear to use an advanced form of brain-machine interface to allow each player to be fully immersed in the virtual world, emulating all physical sensations.
To their surprise (and confusion), Danny and Karl find themselves transitioning from fist-fighting to kissing. Over the course of many games, they continue to explore a sexual and romantic relationship in the virtual world, leaving them confused and distant in the real world. The virtual and physical realities begin to blur, and so do the identities of the players with their avatars. Danny, who is married (in a heterosexual relationship) and is a father, begins to carry guilt and confusion in the real world. They both wonder if there would be any spark between them in real life.
The brain-machine interface (BMI) depicted in the episode is still science fiction, but that hasn’t stopped innovators from pushing the technology forward. Experts today are designing more intricate BMI systems while programming better algorithms to interpret the neural signals they capture. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate with one another purely through brainwaves.
The convergence of BMIs with virtual reality and artificial intelligence could make the experience of such immersive digital realities possible. Virtual reality, too, is decreasing exponentially in cost and increasing in quality.
The narrative provides meaningful commentary on another tech area—gaming. It highlights video games not necessarily as addictive distractions, but rather as a platform for connecting with others in a deeper way. This is already very relevant. Video games like Final Fantasy are often a tool for meaningful digital connections for their players.
The Implications of Virtual Reality on Love and Relationships
The narrative of Striking Vipers raises many novel questions about the implications of immersive technologies on relationships: could the virtual world allow us a safe space to explore suppressed desires? Can virtual avatars make it easier for us to show affection to those we care about? Can a sexual or romantic encounter in the digital world be considered infidelity?
Above all, the episode explores the therapeutic possibilities of such technologies. While many fears about virtual reality had been raised in previous seasons of Black Mirror, this episode was focused on its potential. This includes the potential of immersive technology to be a source of liberation, meaningful connections, and self-exploration, as well as a tool for realizing our true identities and desires.
Once again, this is aligned with emerging trends in VR. We are seeing the rise of social VR applications and platforms that allow you to hang out with your friends and family as avatars in the virtual space. The technology is allowing for animation movies, such as Coco VR, to become an increasingly social and interactive experience. Considering that meaningful social interaction can alleviate depression and anxiety, such applications could contribute to well-being.
Techno-philosopher and National Geographic host Jason Silva points out that immersive media technologies can be “engines of empathy.” VR allows us to enter virtual spaces that mimic someone else’s state of mind, allowing us to empathize with the way they view the world. Silva said, “Imagine the intimacy that becomes possible when people meet and they say, ‘Hey, do you want to come visit my world? Do you want to see what it’s like to be inside my head?’”
What is most fascinating about Striking Vipers is that it explores how we may redefine love with virtual reality; we are introduced to love between virtual avatars. While this kind of love may seem confusing to audiences, it may be one of the complex implications of virtual reality on human relationships.
In many ways, the title Black Mirror couldn’t be more appropriate, as each episode serves as a mirror to the most disturbing aspects of our psyches as they get amplified through technology. However, what we see in uplifting and thought-provoking plots like Striking Vipers, San Junipero, and Hang The DJ is that technology could also amplify the most positive aspects of our humanity. This includes our powerful capacity to love.
Image Credit: Arsgera / Shutterstock.com Continue reading