Tag Archives: feedback
#438613 Video Friday: Digit Takes a Hike
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
It's winter in Oregon, so everything is damp, all the time. No problem for Digit!
Also the case for summer in Oregon.
[ Agility Robotics ]
While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.
No, this doesn't squick me out at all, why would it.
[ Georgia Tech ]
A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.
[ Paper ]
Thanks Zhifeng!
The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.
As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.
[ SRI ]
Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.
[ Disney Research ]
Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.
[ Engineered Arts ]
There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:
[ Paper ]
Thanks Van!
This is really more of an automated system than a robot, but these little levitating pucks are very very slick.
ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.
[ ACOPOS ]
Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.
[ CHARM Lab ]
The quadrotor experts at UZH have been really cranking it up recently.
Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.
[ Paper ]
I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?
[ Harvest Automation ]
Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.
[ OTTO Motors ]
Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.
[ PRISMA Lab ]
Thanks Fan!
State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.
[ Paper ]
Highlights from the 2020 ROS Industrial conference.
[ ROS Industrial ]
Thanks Thilo!
Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”
[ CHI 1995 ]
This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”
Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.
[ UPenn ] Continue reading
#438012 Video Friday: These Robots Have Made 1 ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.
We're proud to announce Starship Delivery Robots have now completed 1,000,000 autonomous deliveries around the world. We were unsure where the one millionth delivery was going to take place, as there are around 15-20 service areas open globally, all with robots doing deliveries every minute. In the end it took place at Bowling Green, Ohio, to a student called Annika Keeton who is a freshman studying pre-health Biology at BGSU. Annika is now part of Starship’s history!
[ Starship ]
I adore this little DIY walking robot- with modular feet and little dials to let you easily adjust the walking parameters, it's an affordable kit that's way more nuanced than most.
It's called Bakiwi, and it costs €95. A squee cover made from feathers or fur is an extra €17. Here's a more serious look at what it can do:
[ Bakiwi ]
Thanks Oswald!
Savva Morozov, an AeroAstro junior, works on autonomous navigation for the MIT mini cheetah robot and reflects on the value of a crowded Infinite Corridor.
[ MIT ]
The world's most advanced haptic feedback gloves just got a huge upgrade! HaptX Gloves DK2 achieves a level of realism that other haptic devices can't match. Whether you’re training your workforce, designing a new product, or controlling robots from a distance, HaptX Gloves make it feel real.
They're the only gloves with true-contact haptics, with patented technology that displace your skin the same way a real object would. With 133 points of tactile feedback per hand, for full palm and fingertip coverage. HaptX Gloves DK2 feature the industry's most powerful force feedback, ~2X the strength of other force feedback gloves. They're also the most accurate motion tracking gloves, with 30 tracked degrees of freedom, sub-millimeter precision, no perceivable latency, and no occlusion.
[ HaptX ]
Yardroid is an outdoor robot “guided by computer vision and artificial intelligence” that seems like it can do almost everything.
These are a lot of autonomous capabilities, but so far, we've only seen the video. So, best not to get too excited until we know more about how it works.
[ Yardroid ]
Thanks Dan!
Since as far as we know, Pepper can't spread COVID, it had a busy year.
I somehow missed seeing that chimpanzee magic show, but here it is:
[ Simon Pierro ] via [ SoftBank Robotics ]
In spite of the pandemic, Professor Hod Lipson’s Robotics Studio persevered and even thrived— learning to work on global teams, to develop protocols for sharing blueprints and code, and to test, evaluate, and refine their designs remotely. Equipped with a 3D printer and a kit of electronics prototyping equipment, our students engineered bipedal robots that were conceptualized, fabricated, programmed, and endlessly iterated around the globe in bedrooms, kitchens, backyards, and any other makeshift laboratory you can imagine.
[ Hod Lipson ]
Thanks Fan!
We all know how much quadrupeds love ice!
[ Ghost Robotics ]
We took the opportunity of the last storm to put the Warthog in the snow of Université Laval. Enjoy!
[ Norlab ]
They've got a long way to go, but autonomous indoor firefighting drones seem like a fantastic idea.
[ CTU ]
Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree.
And your word of the day is whiffletree, which is “a mechanism to distribute force evenly through linkages.”
[ DART Lab ]
Thanks Raymond!
Some highlights of robotic projects at FZI in 2020, all using ROS.
[ FZI ]
Thanks Fan!
iRobot CEO Colin Angle threatens my job by sharing some cool robots.
[ iRobot ]
A fascinating new talk from Henry Evans on robotic caregivers.
[ HRL ]
The ANA Avatar XPRIZE semifinals selection submission for Team AVATRINA. The setting is a mock clinic, with the patient sitting on a wheelchair and nurse having completed an initial intake. Avatar enters the room controlled by operator (Doctor). A rolling tray table with medical supplies (stethoscope, pulse oximeter, digital thermometer, oxygen mask, oxygen tube) is by the patient’s side. Demonstrates head tracking, stereo vision, fine manipulation, bimanual manipulation, safe impedance control, and navigation.
[ Team AVATRINA ]
This five year old talk from Mikell Taylor, who wrote for us a while back and is now at Amazon Robotics, is entitled “Nobody Cares About Your Robot.” For better or worse, it really doesn't sound like it was written five years ago.
Robotics for the consumer market – Mikell Taylor from Scott Handsaker on Vimeo.
[ Mikell Taylor ]
Fall River Community Media presents this wonderful guy talking about his love of antique robot toys.
If you enjoy this kind of slow media, Fall River also has weekly Hot Dogs Cool Cats adoption profiles that are super relaxing to watch.
[ YouTube ] Continue reading
#437964 How Explainable Artificial Intelligence ...
The field of artificial intelligence has created computers that can drive cars, synthesize chemical compounds, fold proteins, and detect high-energy particles at a superhuman level.
However, these AI algorithms cannot explain the thought processes behind their decisions. A computer that masters protein folding and also tells researchers more about the rules of biology is much more useful than a computer that folds proteins without explanation.
Therefore, AI researchers like me are now turning our efforts toward developing AI algorithms that can explain themselves in a manner that humans can understand. If we can do this, I believe that AI will be able to uncover and teach people new facts about the world that have not yet been discovered, leading to new innovations.
Learning From Experience
One field of AI, called reinforcement learning, studies how computers can learn from their own experiences. In reinforcement learning, an AI explores the world, receiving positive or negative feedback based on its actions.
This approach has led to algorithms that have independently learned to play chess at a superhuman level and prove mathematical theorems without any human guidance. In my work as an AI researcher, I use reinforcement learning to create AI algorithms that learn how to solve puzzles such as the Rubik’s Cube.
Through reinforcement learning, AIs are independently learning to solve problems that even humans struggle to figure out. This has got me and many other researchers thinking less about what AI can learn and more about what humans can learn from AI. A computer that can solve the Rubik’s Cube should be able to teach people how to solve it, too.
Peering Into the Black Box
Unfortunately, the minds of superhuman AIs are currently out of reach to us humans. AIs make terrible teachers and are what we in the computer science world call “black boxes.”
AI simply spits out solutions without giving reasons for its solutions. Computer scientists have been trying for decades to open this black box, and recent research has shown that many AI algorithms actually do think in ways that are similar to humans. For example, a computer trained to recognize animals will learn about different types of eyes and ears and will put this information together to correctly identify the animal.
The effort to open up the black box is called explainable AI. My research group at the AI Institute at the University of South Carolina is interested in developing explainable AI. To accomplish this, we work heavily with the Rubik’s Cube.
The Rubik’s Cube is basically a pathfinding problem: Find a path from point A—a scrambled Rubik’s Cube—to point B—a solved Rubik’s Cube. Other pathfinding problems include navigation, theorem proving and chemical synthesis.
My lab has set up a website where anyone can see how our AI algorithm solves the Rubik’s Cube; however, a person would be hard-pressed to learn how to solve the cube from this website. This is because the computer cannot tell you the logic behind its solutions.
Solutions to the Rubik’s Cube can be broken down into a few generalized steps—the first step, for example, could be to form a cross while the second step could be to put the corner pieces in place. While the Rubik’s Cube itself has over 10 to the 19th power possible combinations, a generalized step-by-step guide is very easy to remember and is applicable in many different scenarios.
Approaching a problem by breaking it down into steps is often the default manner in which people explain things to one another. The Rubik’s Cube naturally fits into this step-by-step framework, which gives us the opportunity to open the black box of our algorithm more easily. Creating AI algorithms that have this ability could allow people to collaborate with AI and break down a wide variety of complex problems into easy-to-understand steps.
A step-by-step refinement approach can make it easier for humans to understand why AIs do the things they do. Forest Agostinelli, CC BY-ND
Collaboration Leads to Innovation
Our process starts with using one’s own intuition to define a step-by-step plan thought to potentially solve a complex problem. The algorithm then looks at each individual step and gives feedback about which steps are possible, which are impossible and ways the plan could be improved. The human then refines the initial plan using the advice from the AI, and the process repeats until the problem is solved. The hope is that the person and the AI will eventually converge to a kind of mutual understanding.
Currently, our algorithm is able to consider a human plan for solving the Rubik’s Cube, suggest improvements to the plan, recognize plans that do not work and find alternatives that do. In doing so, it gives feedback that leads to a step-by-step plan for solving the Rubik’s Cube that a person can understand. Our team’s next step is to build an intuitive interface that will allow our algorithm to teach people how to solve the Rubik’s Cube. Our hope is to generalize this approach to a wide range of pathfinding problems.
People are intuitive in a way unmatched by any AI, but machines are far better in their computational power and algorithmic rigor. This back and forth between man and machine utilizes the strengths from both. I believe this type of collaboration will shed light on previously unsolved problems in everything from chemistry to mathematics, leading to new solutions, intuitions and innovations that may have, otherwise, been out of reach.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Serg Antonov / Unsplash Continue reading