Tag Archives: family

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots

#438801 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots

#438785 Video Friday: A Blimp For Your Cat

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Shiny robotic cat toy blimp!

I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”

[ NTT DoCoMo ] via [ RobotStart ]

If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.

During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.

Here's a better look at where Percy ended up:

[ NASA ]

The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.

[ Agility Robotics ]

SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:

The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.

[ SkyMul ]

Thanks Eohan!

Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.

I don't totally understand it, but I want it anyway.

[ Flatcat ]

Thanks Oswald!

This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!

[ Dave's Armoury ]

Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.

[ Paper ]

Thanks Van!

In the 1970s, The CIA​ created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.

It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.

[ CIA ]

Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.

[ Ohio State ]

This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.

[ Paper ]

Thanks Fan!

A couple of new cobots from ABB, designed to work safely around humans.

[ ABB ]

Thanks Fan!

It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.

[ Tested ]

SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.

[ SVR ]

RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.

In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.

[ RAS SoRo ]

IFRR presents a Colloquium on Human Robot Interaction.

Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.

[ IFRR ]

Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.

There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.

[ ENIAC Day ] Continue reading

Posted in Human Robots

#437946 Video Friday: These Robots Are Ready for ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.

Is it too late to say, “Happy Holidays”? Yes! Is it too late for a post packed with holiday robot videos? Never!

The Autonomous Systems Lab at ETH Zurich wishes everyone a Merry Christmas and a Happy 2021!

Now you know the best kept secret in robotics- the ETH Zurich Autonomous Systems Lab is a shack in the woods. With an elevator.

[ ASL ]

We have had to do things differently this year, and the holiday season is no exception. But through it all, we still found ways to be together. From all of us at NATO, Happy Holidays. After training in the snow and mountains of Iceland, an EOD team returns to base. Passing signs reminding them to ‘Keep your distance’ due to COVID-19, they return to their office a little dejected, unsure how they can safely enjoy the holidays. But the EOD robot saves the day and finds a unique way to spread the holiday cheer – socially distanced, of course.

[ EATA ]

Season's Greetings from Voliro!

[ Voliro ]

Thanks Daniel!

Even if you don't have a robot at home, you can still make Halodi Robotics's gingerbread cookies the old fashioned way.

[ Halodi Robotics ]

Thanks Jesper!

We wish you all a Merry Christmas in this very different 2020. This year has truly changed the world and our way of living. We, Energy Robotics, like to say thank you to all our customers, partners, supporters, friends and family.

An Aibo ERS-7? Sweet!

[ Energy Robotics ]

Thanks Stefan!

The nickname for this drone should be “The Grinch.”

As it turns out, in real life taking samples of trees to determine how healthy they are is best done from the top.

[ DeLeaves ]

Thanks Alexis!

ETH Zurich would like to wish you happy holidays and a successful 2021 full of energy and health!

[ ETH Zurich ]

The QBrobotics Team wishes you all a Merry Christmas and a Happy New Year!

[ QBrobotics ]

Extend Robotics avatar twin got so excited opening a Christmas gift, using two arms coordinating, showing the dexterity and speed.

[ Extend Robotics ]

HEBI Robotics wishes everyone a great holiday season! Onto 2021!

[ HEBI Robotics ]

Christmas at the Mobile Robots Lab at Poznan Polytechnic.

[ Poznan ]

SWarm Holiday Wishes from the Hauert Lab!

[ Hauert Lab ]

Brubotics-VUB SMART and SHERO team wishes you a Merry Christmas and Happy 2021!

[ SMART ]

Success is all about teamwork! Thank you for supporting PAL Robotics. This festive season enjoy and stay safe!

[ PAL Robotics ]

Our robots wish you Happy Holidays! Starring world's first robot slackliner (Leonardo)!

[ Caltech ]

Happy Holidays and a Prosperous New Year from ZenRobotics!

[ ZenRobotics ]

Our Highly Dexterous Manipulation System (HDMS) dual-arm robot is ringing in the new year with good cheer!

[ RE2 Robotics ]

Happy Holidays 2020 from NAO!

[ SoftBank Robotics ]

Happy Holidays from DENSO Robotics!

[ DENSO ] Continue reading

Posted in Human Robots

#437940 How Boston Dynamics Taught Its Robots to ...

A week ago, Boston Dynamics posted a video of Atlas, Spot, and Handle dancing to “Do You Love Me.” It was, according to the video description, a way “to celebrate the start of what we hope will be a happier year.” As of today the video has been viewed nearly 24 million times, and the popularity is no surprise, considering the compelling mix of technical prowess and creativity on display.

Strictly speaking, the stuff going on in the video isn’t groundbreaking, in the sense that we’re not seeing any of the robots demonstrate fundamentally new capabilities, but that shouldn’t take away from how impressive it is—you’re seeing state-of-the-art in humanoid robotics, quadrupedal robotics, and whatever-the-heck-Handle-is robotics.

What is unique about this video from Boston Dynamics is the artistic component. We know that Atlas can do some practical tasks, and we know it can do some gymnastics and some parkour, but dancing is certainly something new. To learn more about what it took to make these dancing robots happen (and it’s much more complicated than it might seem), we spoke with Aaron Saunders, Boston Dynamics’ VP of Engineering.

Saunders started at Boston Dynamics in 2003, meaning that he’s been a fundamental part of a huge number of Boston Dynamics’ robots, even the ones you may have forgotten about. Remember LittleDog, for example? A team of two designed and built that adorable little quadruped, and Saunders was one of them.

While he’s been part of the Atlas project since the beginning (and had a hand in just about everything else that Boston Dynamics works on), Saunders has spent the last few years leading the Atlas team specifically, and he was kind enough to answer our questions about their dancing robots.

IEEE Spectrum: What’s your sense of how the Internet has been reacting to the video?

Aaron Saunders: We have different expectations for the videos that we make; this one was definitely anchored in fun for us. The response on YouTube was record-setting for us: We received hundreds of emails and calls with people expressing their enthusiasm, and also sharing their ideas for what we should do next, what about this song, what about this dance move, so that was really fun. My favorite reaction was one that I got from my 94-year-old grandma, who watched the video on YouTube and then sent a message through the family asking if I’d taught the robot those sweet moves. I think this video connected with a broader audience, because it mixed the old-school music with new technology.

We haven’t seen Atlas move like this before—can you talk about how you made it happen?

We started by working with dancers and a choreographer to create an initial concept for the dance by composing and assembling a routine. One of the challenges, and probably the core challenge for Atlas in particular, was adjusting human dance moves so that they could be performed on the robot. To do that, we used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go “that would be easy” or “that would be hard” or “that scares me.” And then we’d have a discussion, try different things in simulation, and make adjustments to find a compatible set of moves that we could execute on Atlas.

Throughout the project, the time frame for creating those new dance moves got shorter and shorter as we built tools, and as an example, eventually we were able to use that toolchain to create one of Atlas’ ballet moves in just one day, the day before we filmed, and it worked. So it’s not hand-scripted or hand-coded, it’s about having a pipeline that lets you take a diverse set of motions, that you can describe through a variety of different inputs, and push them through and onto the robot.

Image: Boston Dynamics

Were there some things that were particularly difficult to translate from human dancers to Atlas? Or, things that Atlas could do better than humans?

Some of the spinning turns in the ballet parts took more iterations to get to work, because they were the furthest from leaping and running and some of the other things that we have more experience with, so they challenged both the machine and the software in new ways. We definitely learned not to underestimate how flexible and strong dancers are—when you take elite athletes and you try to do what they do but with a robot, it’s a hard problem. It’s humbling. Fundamentally, I don’t think that Atlas has the range of motion or power that these athletes do, although we continue developing our robots towards that, because we believe that in order to broadly deploy these kinds of robots commercially, and eventually in a home, we think they need to have this level of performance.

One thing that robots are really good at is doing something over and over again the exact same way. So once we dialed in what we wanted to do, the robots could just do it again and again as we played with different camera angles.

I can understand how you could use human dancers to help you put together a routine with Atlas, but how did that work with Spot, and particularly with Handle?

I think the people we worked with actually had a lot of talent for thinking about motion, and thinking about how to express themselves through motion. And our robots do motion really well—they’re dynamic, they’re exciting, they balance. So I think what we found was that the dancers connected with the way the robots moved, and then shaped that into a story, and it didn’t matter whether there were two legs or four legs. When you don’t necessarily have a template of animal motion or human behavior, you just have to think a little harder about how to go about doing something, and that’s true for more pragmatic commercial behaviors as well.

“We used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go ‘that would be easy’ or ‘that would be hard’ or ‘that scares me.’”
—Aaron Saunders, Boston Dynamics

How does the experience that you get teaching robots to dance, or to do gymnastics or parkour, inform your approach to robotics for commercial applications?

We think that the skills inherent in dance and parkour, like agility, balance, and perception, are fundamental to a wide variety of robot applications. Maybe more importantly, finding that intersection between building a new robot capability and having fun has been Boston Dynamics’ recipe for robotics—it’s a great way to advance.

One good example is how when you push limits by asking your robots to do these dynamic motions over a period of several days, you learn a lot about the robustness of your hardware. Spot, through its productization, has become incredibly robust, and required almost no maintenance—it could just dance all day long once you taught it to. And the reason it’s so robust today is because of all those lessons we learned from previous things that may have just seemed weird and fun. You’ve got to go into uncharted territory to even know what you don’t know.

Image: Boston Dynamics

It’s often hard to tell from watching videos like these how much time it took to make things work the way you wanted them to, and how representative they are of the actual capabilities of the robots. Can you talk about that?

Let me try to answer in the context of this video, but I think the same is true for all of the videos that we post. We work hard to make something, and once it works, it works. For Atlas, most of the robot control existed from our previous work, like the work that we’ve done on parkour, which sent us down a path of using model predictive controllers that account for dynamics and balance. We used those to run on the robot a set of dance steps that we’d designed offline with the dancers and choreographer. So, a lot of time, months, we spent thinking about the dance and composing the motions and iterating in simulation.

Dancing required a lot of strength and speed, so we even upgraded some of Atlas’ hardware to give it more power. Dance might be the highest power thing we’ve done to date—even though you might think parkour looks way more explosive, the amount of motion and speed that you have in dance is incredible. That also took a lot of time over the course of months; creating the capability in the machine to go along with the capability in the algorithms.

Once we had the final sequence that you see in the video, we only filmed for two days. Much of that time was spent figuring out how to move the camera through a scene with a bunch of robots in it to capture one continuous two-minute shot, and while we ran and filmed the dance routine multiple times, we could repeat it quite reliably. There was no cutting or splicing in that opening two-minute shot.

There were definitely some failures in the hardware that required maintenance, and our robots stumbled and fell down sometimes. These behaviors are not meant to be productized and to be a 100 percent reliable, but they’re definitely repeatable. We try to be honest with showing things that we can do, not a snippet of something that we did once. I think there’s an honesty required in saying that you’ve achieved something, and that’s definitely important for us.

You mentioned that Spot is now robust enough to dance all day. How about Atlas? If you kept on replacing its batteries, could it dance all day, too?

Atlas, as a machine, is still, you know… there are only a handful of them in the world, they’re complicated, and reliability was not a main focus. We would definitely break the robot from time to time. But the robustness of the hardware, in the context of what we were trying to do, was really great. And without that robustness, we wouldn’t have been able to make the video at all. I think Atlas is a little more like a helicopter, where there’s a higher ratio between the time you spend doing maintenance and the time you spend operating. Whereas with Spot, the expectation is that it’s more like a car, where you can run it for a long time before you have to touch it.

When you’re teaching Atlas to do new things, is it using any kind of machine learning? And if not, why not?

As a company, we’ve explored a lot of things, but Atlas is not using a learning controller right now. I expect that a day will come when we will. Atlas’ current dance performance uses a mixture of what we like to call reflexive control, which is a combination of reacting to forces, online and offline trajectory optimization, and model predictive control. We leverage these techniques because they’re a reliable way of unlocking really high performance stuff, and we understand how to wield these tools really well. We haven’t found the end of the road in terms of what we can do with them.

We plan on using learning to extend and build on the foundation of software and hardware that we’ve developed, but I think that we, along with the community, are still trying to figure out where the right places to apply these tools are. I think you’ll see that as part of our natural progression.

Image: Boston Dynamics

Much of Atlas’ dynamic motion comes from its lower body at the moment, but parkour makes use of upper body strength and agility as well, and we’ve seen some recent concept images showing Atlas doing vaults and pullups. Can you tell us more?

Humans and animals do amazing things using their legs, but they do even more amazing things when they use their whole bodies. I think parkour provides a fantastic framework that allows us to progress towards whole body mobility. Walking and running was just the start of that journey. We’re progressing through more complex dynamic behaviors like jumping and spinning, that’s what we’ve been working on for the last couple of years. And the next step is to explore how using arms to push and pull on the world could extend that agility.

One of the missions that I’ve given to the Atlas team is to start working on leveraging the arms as much as we leverage the legs to enhance and extend our mobility, and I’m really excited about what we’re going to be working on over the next couple of years, because it’s going to open up a lot more opportunities for us to do exciting stuff with Atlas.

What’s your perspective on hydraulic versus electric actuators for highly dynamic robots?

Across my career at Boston Dynamics, I’ve felt passionately connected to so many different types of technology, but I’ve settled into a place where I really don’t think this is an either-or conversation anymore. I think the selection of actuator technology really depends on the size of the robot that you’re building, what you want that robot to do, where you want it to go, and many other factors. Ultimately, it’s good to have both kinds of actuators in your toolbox, and I love having access to both—and we’ve used both with great success to make really impressive dynamic machines.

I think the only delineation between hydraulic and electric actuators that appears to be distinct for me is probably in scale. It’s really challenging to make tiny hydraulic things because the industry just doesn’t do a lot of that, and the reciprocal is that the industry also doesn’t tend to make massive electrical things. So, you may find that to be a natural division between these two technologies.

Besides what you’re working on at Boston Dynamics, what recent robotics research are you most excited about?

For us as a company, we really love to follow advances in sensing, computer vision, terrain perception, these are all things where the better they get, the more we can do. For me personally, one of the things I like to follow is manipulation research, and in particular manipulation research that advances our understanding of complex, friction-based interactions like sliding and pushing, or moving compliant things like ropes.

We’re seeing a shift from just pinching things, lifting them, moving them, and dropping them, to much more meaningful interactions with the environment. Research in that type of manipulation I think is going to unlock the potential for mobile manipulators, and I think it’s really going to open up the ability for robots to interact with the world in a rich way.

Is there anything else you’d like people to take away from this video?

For me personally, and I think it’s because I spend so much of my time immersed in robotics and have a deep appreciation for what a robot is and what its capabilities and limitations are, one of my strong desires is for more people to spend more time with robots. We see a lot of opinions and ideas from people looking at our videos on YouTube, and it seems to me that if more people had opportunities to think about and learn about and spend time with robots, that new level of understanding could help them imagine new ways in which robots could be useful in our daily lives. I think the possibilities are really exciting, and I just want more people to be able to take that journey. Continue reading

Posted in Human Robots