Tag Archives: factory
#431603 What We Can Learn From the Second Life ...
For every new piece of technology that gets developed, you can usually find people saying it will never be useful. The president of the Michigan Savings Bank in 1903, for example, said, “The horse is here to stay but the automobile is only a novelty—a fad.” It’s equally easy to find people raving about whichever new technology is at the peak of the Gartner Hype Cycle, which tracks the buzz around these newest developments and attempts to temper predictions. When technologies emerge, there are all kinds of uncertainties, from the actual capacity of the technology to its use cases in real life to the price tag.
Eventually the dust settles, and some technologies get widely adopted, to the extent that they can become “invisible”; people take them for granted. Others fall by the wayside as gimmicky fads or impractical ideas. Picking which horses to back is the difference between Silicon Valley millions and Betamax pub-quiz-question obscurity. For a while, it seemed that Google had—for once—backed the wrong horse.
Google Glass emerged from Google X, the ubiquitous tech giant’s much-hyped moonshot factory, where highly secretive researchers work on the sci-fi technologies of the future. Self-driving cars and artificial intelligence are the more mundane end for an organization that apparently once looked into jetpacks and teleportation.
The original smart glasses, Google began selling Google Glass in 2013 for $1,500 as prototypes for their acolytes, around 8,000 early adopters. Users could control the glasses with a touchpad, or, activated by tilting the head back, with voice commands. Audio relay—as with several wearable products—is via bone conduction, which transmits sound by vibrating the skull bones of the user. This was going to usher in the age of augmented reality, the next best thing to having a chip implanted directly into your brain.
On the surface, it seemed to be a reasonable proposition. People had dreamed about augmented reality for a long time—an onboard, JARVIS-style computer giving you extra information and instant access to communications without even having to touch a button. After smartphone ubiquity, it looked like a natural step forward.
Instead, there was a backlash. People may be willing to give their data up to corporations, but they’re less pleased with the idea that someone might be filming them in public. The worst aspect of smartphones is trying to talk to people who are distractedly scrolling through their phones. There’s a famous analogy in Revolutionary Road about an old couple’s loveless marriage: the husband tunes out his wife’s conversation by turning his hearing aid down to zero. To many, Google Glass seemed to provide us with a whole new way to ignore each other in favor of our Twitter feeds.
Then there’s the fact that, regardless of whether it’s because we’re not used to them, or if it’s a more permanent feature, people wearing AR tech often look very silly. Put all this together with a lack of early functionality, the high price (do you really feel comfortable wearing a $1,500 computer?), and a killer pun for the users—Glassholes—and the final recipe wasn’t great for Google.
Google Glass was quietly dropped from sale in 2015 with the ominous slogan posted on Google’s website “Thanks for exploring with us.” Reminding the Glass users that they had always been referred to as “explorers”—beta-testing a product, in many ways—it perhaps signaled less enthusiasm for wearables than the original, Google Glass skydive might have suggested.
In reality, Google went back to the drawing board. Not with the technology per se, although it has improved in the intervening years, but with the uses behind the technology.
Under what circumstances would you actually need a Google Glass? When would it genuinely be preferable to a smartphone that can do many of the same things and more? Beyond simply being a fashion item, which Google Glass decidedly was not, even the most tech-evangelical of us need a convincing reason to splash $1,500 on a wearable computer that’s less socially acceptable and less easy to use than the machine you’re probably reading this on right now.
Enter the Google Glass Enterprise Edition.
Piloted in factories during the years that Google Glass was dormant, and now roaring back to life and commercially available, the Google Glass relaunch got under way in earnest in July of 2017. The difference here was the specific audience: workers in factories who need hands-free computing because they need to use their hands at the same time.
In this niche application, wearable computers can become invaluable. A new employee can be trained with pre-programmed material that explains how to perform actions in real time, while instructions can be relayed straight into a worker’s eyeline without them needing to check a phone or switch to email.
Medical devices have long been a dream application for Google Glass. You can imagine a situation where people receive real-time information during surgery, or are augmented by artificial intelligence that provides additional diagnostic information or questions in response to a patient’s symptoms. The quest to develop a healthcare AI, which can provide recommendations in response to natural language queries, is on. The famously untidy doctor’s handwriting—and the associated death toll—could be avoided if the glasses could take dictation straight into a patient’s medical records. All of this is far more useful than allowing people to check Facebook hands-free while they’re riding the subway.
Google’s “Lens” application indicates another use for Google Glass that hadn’t quite matured when the original was launched: the Lens processes images and provides information about them. You can look at text and have it translated in real time, or look at a building or sign and receive additional information. Image processing, either through neural networks hooked up to a cloud database or some other means, is the frontier that enables driverless cars and similar technology to exist. Hook this up to a voice-activated assistant relaying information to the user, and you have your killer application: real-time annotation of the world around you. It’s this functionality that just wasn’t ready yet when Google launched Glass.
Amazon’s recent announcement that they want to integrate Alexa into a range of smart glasses indicates that the tech giants aren’t ready to give up on wearables yet. Perhaps, in time, people will become used to voice activation and interaction with their machines, at which point smart glasses with bone conduction will genuinely be more convenient than a smartphone.
But in many ways, the real lesson from the initial failure—and promising second life—of Google Glass is a simple question that developers of any smart technology, from the Internet of Things through to wearable computers, must answer. “What can this do that my smartphone can’t?” Find your answer, as the Enterprise Edition did, as Lens might, and you find your product.
Image Credit: Hattanas / Shutterstock.com Continue reading
#431371 Amazon Is Quietly Building the Robots of ...
Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading
#431343 How Technology Is Driving Us Toward Peak ...
At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.
“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”
An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.
“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”
This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading
#430830 Biocomputers Made From Cells Can Now ...
When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.
Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading
#428696 Cleaning equipment-maker hopes to ...
New robotics technology is seeping into every part of manufacturing – even the cleaning of the factory floors and assembly lines. Continue reading