Tag Archives: face
#439700 Video Friday: Robot Gecko Smashes Face ...
Your weekly selection of awesome robot videos
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We'll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – [Online Event]
IROS 2021 – September 27-1, 2021 – [Online Event]
ROSCon 2021 – October 20-21, 2021 – [Online Event]
Let us know if you have suggestions for next week, and enjoy today's videos.
The incredible title of this paper is “Tails stabilize landing of gliding geckos crashing head-first into tree trunks.” No hype here at all: geckos really do glide, they really do crash head-first into tree trunks, and they really do rely on their tails for post-landing stabilization and look ridiculous while doing it.
Their gecko-inspired robot features a soft torso, where the tail can be taken off and put back on. When the front foot hits a surface, the robot is programmed to bend its tail just like the reflex that Jusufi discovered previously in climbing geckos. The information is processed via a microcontroller on the shoulder. This signal activates the motor to pull on a tendon and hence pushes the tail into the wall to slow the head over heels pitchback.
“Nature has many unexpected, elegant solutions to engineering problems—and this is wonderfully illustrated by the way geckos can use their tails to turn a head-first collision into a successful perching maneuver. Landing from flight is difficult, and we hope our findings will lead to new techniques for robot mobility—sometimes crashes are helpful,” Robert Siddall describes.[ Paper ] via [ UC Berkeley ]
Thanks, Robert!
The subterranean stage is being set for the DARPA Subterranean Challenge Final Event at Louisville's Mega Cavern. The event is the culmination of a vision to revolutionize search and rescue using robots in underground domains. Tune in Sept 21-24 on SubTV.
I'll be there!
[ SubT ]
Remote work has been solved thanks to Robovie-Z.
[ Vstone ]
The best part of this video is not the tube-launched net-firing drone-hunting drone, it's the logo of the giant chameleon perched on top of a Humvee firing its tongue at a bug while being attacked by bats for some reason.
[ Dynetics ]
I'm pretty sure this is an old video, but any robot named “Schmoobot” has a place in Video Friday.
LET ME TAKE YOU TO THE LOCATION OF JUICES
[ Ballbot ]
Some more recent videos on Ballbot, and we're very happy that it's still an active research platform!
The CMU ballbot using its whole body controller to maintain balance on top of its ball while also balancing a red cup with water on the right hand while tracking a circular motion and an empty water bottle on the left hand.[ Ballbot ]
On Aug. 18, 2021, the MQ25 T1 test asset refueled a U.S. Navy E-2D Hawkeye command-and-control aircraft. This is the unmanned aerial refueler's second refueling mission.
Not to throw shade here, but I think the robot plane landed a little bit better than the human piloted plane.
[ Boeing ]
We proposed a method to wirelessly drive multiple soft actuators by laser projection. Laser projection enables both wireless energy supply and the selection of target actuators. Thus, we do not need additional components such as electric circuits and batteries to achieve simple and scalable implementation of multiple soft actuators.
[ Takefumi Hiraki ]
Thanks, Fan!
In this video, we demonstrated the motion of our biped robot “Robovie-Z”, which we used to enter the “ROBO-ONE Ultimate Action” contest.
[ Robo-One ]
Some impressive performance here, but that poor drone is overstuffed.
[ RISLab ]
Proximity sensors and analog circuits are all it takes to make a fairly high performance manipulation.
[ Keisuke Koyama ]
Thanks, Fan!
This video showcases an LP control algorithm producing both gravitational load compensation and cuff force amplification capabilities via whole-body exoskeleton forces. Parts of this video contain an additional payload of 25lbs (a weight on the back).
[ UT Austin HCRL ]
An overview of Tertill the solar-powered weeding robot for home gardens. Watch Joe Jones, the inventor of Tertill (and Roomba!) talk about how the robot and how and where it works.
[ Tertill ]
One small step integrating our Extend AMAS VR software to operate Universal Robots UR5e. This VR application combines volumetric telepresence technology with interactive digital twin to provide intuitive interface for non-robotic expert to teleoperate or program the robot from remote location over the internet.
[ Extend Robotics ]
Enrollment is open for a pair of online courses taught by Christoph Bartneck that'll earn you a Professional Certificate in Human-Robot Interaction. While the website really wants you to think that it costs you $448.20, if you register, you can skip the fee and take the courses for free! The book is even free, too. I have no idea how they can afford to do this, but good on them, right?
[ edX ]
Thanks, Christoph! Continue reading →
#439095 DARPA Prepares for the Subterranean ...
The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.
It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.
Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.
The Louisville Mega Cavern is a former limestone mine, most of which is under the Louisville Zoo. It’s not all that deep, mostly less than 30 meters under the surface, but it’s enormous: with 370,000 square meters of rooms and passages, the cavern currently hosts (among other things) a business park, a zipline course, and mountain bike trails, because why not. While DARPA is keeping pretty quiet on the details, I’m guessing that they’ll be taking over a chunk of the cavern and filling it with features representing as many of the environmental challenges as they can.
To learn more about how the SubT Final Event is going to go, we spoke with SubT Program Manager Tim Chung. But first, we talked about Tim’s perspective on the success of the Urban Circuit, and how teams have been managing without an in-person Cave Circuit.
IEEE Spectrum: How did the SubT Urban Circuit go?
Tim Chung: On a couple fronts, Urban Circuit was really exciting. We were in this unfinished nuclear power plant—I’d be surprised if any of the competitors had prior experience in such a facility, or anything like it. I think that was illuminating both from an experiential point of view for the competitors, but also from a technology point of view, too.
One thing that I thought was really interesting was that we, DARPA, didn't need to make the venue more challenging. The real world is really that hard. There are places that were just really heinous for these robots to have to navigate through in order to look in every nook and cranny for artifacts. There were corners and doorways and small corridors and all these kind of things that really forced the teams to have to work hard, and the feedback was, why did DARPA have to make it so hard? But we didn’t, and in fact there were places that for the safety of the robots and personnel, we had to ensure the robots couldn’t go.
It sounds like some teams thought this course was on the more difficult side—do you think you tuned it to just the right amount of DARPA-hard?
Our calibration worked quite well. We were able to tease out and help refine and better understand what technologies are both useful and critical and also those technologies that might not necessarily get you the leap ahead capability. So as an example, the Urban Circuit really emphasized verticality, where you have to be able to sense, understand, and maneuver in three dimensions. Being able to capitalize on their robot technologies to address that verticality really stratified the teams, and showed how critical those capabilities are.
We saw teams that brought a lot of those capabilities do very well, and teams that brought baseline capabilities do what they could on the single floor that they were able to operate on. And so I think we got the Goldilocks solution for Urban Circuit that combined both difficulty and ambition.
Photos: Evan Ackerman/IEEE Spectrum
Two SubT Teams embedded networking equipment in balls that they could throw onto the course.
One of the things that I found interesting was that two teams independently came up with throwable network nodes. What was DARPA’s reaction to this? Is any solution a good solution, or was it more like the teams were trying to game the system?
You mean, do we want teams to game the rules in any way so as to get a competitive advantage? I don't think that's what the teams were doing. I think they were operating not only within the bounds of the rules, which permitted such a thing as throwable sensors where you could stand at the line and see how far you could chuck these things—not only was that acceptable by the rules, but anticipated. Behind the scenes, we tried to do exactly what these teams are doing and think through different approaches, so we explicitly didn't forbid such things in our rules because we thought it's important to have as wide an aperture as possible.
With these comms nodes specifically, I think they’re pretty clever. They were in some cases hacked together with a variety of different sports paraphernalia to see what would provide the best cushioning. You know, a lot of that happens in the field, and what it captured was that sometimes you just need to be up at two in the morning and thinking about things in a slightly different way, and that's when some nuggets of innovation can arise, and we see this all the time with operators in the field as well. They might only have duct tape or Styrofoam or whatever the case may be and that's when they come up with different ways to solve these problems. I think from DARPA’s perspective, and certainly from my perspective, wherever innovation can strike, we want to try to encourage and inspire those opportunities. I thought it was great, and it’s all part of the challenge.
Is there anything you can tell us about what your original plan had been for the Cave Circuit?
I can say that we’ve had the opportunity to go through a number of these caves scattered all throughout the country, and engage with caving communities—cavers clubs, speleologists that conduct research, and then of course the cave rescue community. The single biggest takeaway
is that every cave, and there are tens of thousands of them in the US alone, every cave has its own personality, and a lot of that personality is quite hidden from humans, because we can’t explore or access all of the cave. This led us to a number of different caves that were intriguing from a DARPA perspective but also inspirational for our Cave Circuit Virtual Competition.
How do you feel like the tuning was for the Virtual Cave Circuit?
The Virtual Competition, as you well know, was exciting in the sense that we could basically combine eight worlds into one competition, whereas the systems track competition really didn’t give us that opportunity. Even if we were able have held the Cave Circuit Systems Competition in person, it would have been at one site, and it would have been challenging to represent the level of diversity that we could with the Virtual Competition. So I think from that perspective, it’s clearly an advantage in terms of calibration—diversity gets you the ability to aggregate results to capture those that excel across all worlds as well as those that do well in one world or some worlds and not the others. I think the calibration was great in the sense that we were able to see the gamut of performance. Those that did well, did quite well, and those that have room to grow showed where those opportunities are for them as well.
We had to find ways to capture that diversity and that representativeness, and I think one of the fun ways we did that was with the different cave world tiles that we were able to combine in a variety of different ways. We also made use of a real world data set that we were able to take from a laser scan. Across the board, we had a really great chance to illustrate why virtual testing and simulation still plays such a dominant role in robotics technology development, and why I think it will continue to play an increasing role for developing these types of autonomy solutions.
Photo: Team CSIRO Data 61
How can systems track teams learn from their testing in whatever cave is local to them and effectively apply that to whatever cave environment is part of the final considering what the diversity of caves is?
I think that hits the nail on the head for what we as technologists are trying to discover—what are the transferable generalizable insights and how does that inform our technology development? As roboticists we want to optimize our systems to perform well at the tasks that they were designed to do, and oftentimes that means specialization because we get increased performance at the expense of being a generalist robot. I think in the case of SubT, we want to have our cake and eat it too—we want robots that perform well and reliably, but we want them to do so not just in one environment, which is how we tend to think about robot performance, but we want them to operate well in many environments, many of which have yet to be faced.
And I think that's kind of the nuance here, that we want robot systems to be generalists for the sake of being able to handle the unknown, namely the real world, but still achieve a high level of performance and perhaps they do that to their combined use of different technologies or advances in autonomy or perception approaches or novel mechanisms or mobility, but somehow they're still able, at least in aggregate, to achieve high performance.
We know these teams eagerly await any type of clue that DARPA can provide like about the SubT environments. From the environment previews for Tunnel, Urban, and even Cave, the teams were pivoting around and thinking a little bit differently. The takeaway, however, was that they didn't go to a clean sheet design—their systems were flexible enough that they could incorporate some of those specialist trends while still maintaining the notion of a generalist framework.
Looking ahead to the SubT Final, what can you tell us about the Louisville Mega Cavern?
As always, I’ll keep you in suspense until we get you there, but I can say that from the beginning of the SubT Challenge we had always envisioned teams of robots that are able to address not only the uncertainty of what's right in front of them, but also the uncertainty of what comes next. So I think the teams will be advantaged by thinking through subdomain awareness, or domain awareness if you want to generalize it, whether that means tuning multi-purpose robots, or deploying different robots, or employing your team of robots differently. Knowing which subdomain you are in is likely to be helpful, because then you can take advantage of those unique lessons learned through all those previous experiences then capitalize on that.
As far as specifics, I think the Mega Cavern offers many of the features important to what it means to be underground, while giving DARPA a pretty blank canvas to realize our vision of the SubT Challenge.
The SubT Final will be different from the earlier circuits in that there’s just one 60-minute run, rather than two. This is going to make things a lot more stressful for teams who have experienced bad robot days—why do it this way?
The preliminary round has two 30-minute runs, and those two runs are very similar to how we have done it during the circuits, of a single run per configuration per course. Teams will have the opportunity to show that their systems can face the obstacles in the final course, and it's the sum of those scores much like we did during the circuits, to help mitigate some of the concerns that you mentioned of having one robot somehow ruin their chances at a prize.
The prize round does give DARPA as well as the community a chance to focus on the top six teams from the preliminary round, and allows us to understand how they came to be at the top of the pack while emphasizing their technological contributions. The prize round will be one and done, but all of these teams we anticipate will be putting their best robot forward and will show the world why they deserve to win the SubT Challenge.
We’ve always thought that when called upon these robots need to operate in really challenging environments, and in the context of real world operations, there is no second chance. I don't think it's actually that much of a departure from our interests and insistence on bringing reliable technologies to the field, and those teams that might have something break here and there, that's all part of the challenge, of being resilient. Many teams struggled with robots that were debilitated on the course, and they still found ways to succeed and overcome that in the field, so maybe the rules emphasize that desire for showing up and working on game day which is consistent, I think, with how we've always envisioned it. This isn’t to say that these systems have to work perfectly, they just have to work in a way such that the team is resilient enough to tackle anything that they face.
It’s not too late for teams to enter for both the Virtual Track and the Systems Track to compete in the SubT Final, right?
Yes, that's absolutely right. Qualifications are still open, we are eager to welcome new teams to join in along with our existing competitors. I think any dark horse competitors coming into the Finals may be able to bring something that we haven't seen before, and that would be really exciting. I think it'll really make for an incredibly vibrant and illuminating final event.
The final event qualification deadline for the Systems Competition is April 21, and the qualification deadline for the Virtual Competition is June 29. More details here. Continue reading →
#439055 Stretch Is Boston Dynamics’ Take on a ...
Today, Boston Dynamics is announcing Stretch, a mobile robot designed to autonomously move boxes around warehouses. At first glance, you might be wondering why the heck this is a Boston Dynamics robot at all, since the dynamic mobility that we associate with most of their platforms is notably absent. The combination of strength and speed in Stretch’s arm is something we haven’t seen before in a mobile robot, and it’s what makes this a unique and potentially exciting entry into the warehouse robotics space.
Useful mobile manipulation in any environment that’s not almost entirely structured is still a significant challenge in robotics, and it requires a very difficult combination of sensing, intelligence, and dynamic motion, all of which are classic Boston Dynamics. But also classic Boston Dynamics is building really cool platforms, and only later trying to figure out a way of making them commercially viable. So why Stretch, why boxes, why now, and (the real question) why not Handle? We talk with Boston Dynamics’ Vice President of Product Engineering Kevin Blankespoor to find out.
Stretch is very explicitly a box-handling mobile robot for relatively well structured warehouses. It’s in no way designed to be a generalist that many of Boston Dynamics’ other robots are. And to be fair, this is absolutely how to make a robot that’s practical and cost effective right out of the crate: Identify a task that is dull or dirty or dangerous for humans, design a robot to do that task safely and efficiently, and deploy it with the expectation that it’ll be really good at that task but not necessarily much else. This is a very different approach than a robot like Spot, where the platform came first and the practical applications came later—with Stretch, it’s all about that specific task in a specific environment.
There are already robotic solutions for truck unloading, palletizing, and depalletizing, but Stretch seems to be uniquely capable. For truck unloading, the highest performance systems that I’m aware of are monstrous things (here’s one example from Honeywell) that use a ton of custom hardware to just sort of ingest the cargo within a trailer all at once. In a highly structured and predictable warehouse, this sort of thing may pay off over the long term, but it’s going to be extremely expensive and not very versatile at all.
Palletizing and depalletizing robots are much more common in warehouses today. They’re almost always large industrial arms surrounded by a network of custom conveyor belts and whatnot, suffering from the same sorts of constraints as a truck unloader— very capable in some situations, but generally high cost and low flexibility.
Photo: Boston Dynamics
Stretch is probably not going to be able to compete with either of these types of dedicated systems when it comes to sheer speed, but it offers lots of other critical advantages: It’s fast and easy to deploy, easy to use, and adaptable to a variety of different tasks without costly infrastructure changes. It’s also very much not Handle, which was Boston Dynamics’ earlier (although not that much earlier) attempt at a box-handling robot for warehouses, and (let’s be honest here) a much more Boston Dynamics-y thing than Stretch seems to be. To learn more about why the answer is Stretch rather than Handle, and how Stretch will fit into the warehouse of the very near future, we spoke with Kevin Blankespoor, Boston Dynamics’ VP of Product Engineering and chief engineer for both Handle and Stretch.
IEEE Spectrum: Tell me about Stretch!
Kevin Blankespoor: Stretch is the first mobile robot that we’ve designed specifically for the warehouse. It’s all about moving boxes. Stretch is a flexible robot that can move throughout the warehouse and do different tasks. During a typical day in the life of Stretch in the future, it might spend the morning on the inbound side of the warehouse unloading boxes from trucks. It might spend the afternoon in the aisles of the warehouse building up pallets to go to retailers and e-commerce facilities, and it might spend the evening on the outbound side of the warehouse loading boxes into the trucks. So, it really goes to where the work is.
There are already other robots that include truck unloading robots, palletizing and depalletizing robots, and mobile bases with arms on them. What makes Boston Dynamics the right company to introduce a new robot in this space?
We definitely thought through this, because there are already autonomous mobile robots [AMRs] out there. Most of them, though, are more like pallet movers or tote movers—they don't have an arm, and most of them are really just about moving something from point A to point B without manipulation capability. We've seen some experiments where people put arms on AMRs, but nothing that's made it very far in the market. And so when we started looking at Stretch, we realized we really needed to make a custom robot, and that it was something we could do quickly.
“We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.”
Stretch is built with pieces from Spot and Atlas and that gave us a big head start. For example, if you look at Stretch’s vision system, it's 2D cameras, depth sensors, and software that allows it to do obstacle detection, box detection, and localization. Those are all the same sensors and software that we've been using for years on our legged robots. And if you look closely at Stretch’s wrist joints, they're actually the same as Spot’s hips. They use the same electric motors, the same gearboxes, the same sensors, and they even have the same closed-loop controller controlling the joints.
If you were to buy an existing industrial robot arm with this kind of performance, it would be about four times heavier than the arm we built, and it's really hard to make that into a mobile robot. A lot of this came from our leg technology because it’s so important for our leg designs to be lightweight for the robots to balance. We took that same strength to weight advantage that we have, and built it into this arm. We're able to rapidly piece together things from our other robots to get us out of the gate quickly, so even though this looks like a totally different robot, we think we have a good head start going into this market.
At what point did you decide to go with an arm on a statically stable base on Stretch, rather than something more, you know, dynamic-y?
Stretch looks really different than the robots that Boston Dynamics has done in the past. But you'd be surprised how much similarity there is between our legged robots and Stretch under the hood. Looking back, we actually got our start on moving boxes with Atlas, and at that point it was just research and development. We were really trying to do force control for box grasping. We were picking up heavy boxes and maintaining balance and working on those fundamentals. We released a video of that as our first next-gen Atlas video, and it was interesting. We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.
So at this point we actually came up with Handle. The intent of Handle was to do a couple things—one was, we thought we could build a simpler robot that had Atlas’ attributes. Handle has a small footprint so it can fit in tight spaces, but it can pick up heavy boxes. And in addition to that, we had always really wanted to combine wheels and legs. We’d been talking about doing that for a decade and so Handle was a chance for us to try it.
We built a couple versions of Handle, and the first one was really just a prototype to kind of explore the morphology. But the second one was more purpose-built for warehouse tasks, and we started building pallets with that one and it looked pretty good. And then we started doing truck unloading with Handle, which was the pivotal moment. Handle could do it, but it took too long. Every time Handle grasped a box, it would have to roll back and then get to a place where it could spin itself to face forward and place the box, and trucks are very tight for a robot this size, so there's not a lot of room to maneuver. We knew the whole time that there was a robot like Stretch that was another alternative, but that's really when it became clear that Stretch would have a lot of advantages, and we started working on it about a year ago.
Stretch is certainly impressive in a practical way, but I’ll admit to really hoping that something like Handle could have turned out to be a viable warehouse robot.
I love the Handle project as well, and I’m very passionate about that robot. And there was a stage before we built Stretch where we thought, “this would be pretty standard looking compared to Handle, is it going to capture enough of the Boston Dynamics secret sauce?” But when you actually dissect all the problems within Stretch that you have to tackle, there are a lot of cool robotics problems left in there—the vision system, the planning, the manipulation, the grasping of the boxes—it's a lot harder to solve than it looks, and we're excited that we're actually getting fairly far down that road now.
What happens to Handle now?
Stretch has really taken over our team as far as warehouse products go. Handle we still use occasionally as a research robot, but it’s not actively under development. Stretch is really Handle’s descendent. Handle’s not retired, exactly, but we’re just using it for things like the dance video.
There’s still potential to do cool stuff with Handle. I do think that combining wheels with legs is very cool, and largely unexplored compared to its potential. So I still think that you're gonna see versions of robots combining wheels and legs like Handle, and maybe a version of Handle in the future that does more of that. But because we're switching this thread from research into product, Stretch is really the main focus now.
How autonomous is Stretch?
Stretch is semi-autonomous, and that means it really needs to work with people to tap into its full potential. With truck unloading, for example, a person will drive Stretch into the back of the truck and then basically point Stretch in the right direction and say go. And from that point on, everything’s autonomous. Stretch has its vision system and its mobility and it can detect all the boxes, grasp all boxes, and move them onto a conveyor all autonomously. This is something that takes people hours to do manually, and Stretch can go all the way until it gets to the last box, and the truck is empty. There are some parts of the truck unloading task that do require people, like verifying that the truck is in the right place and opening the doors. But this takes a person just a few minutes, and then the robot can spend hours or as long as it takes to do its job autonomously.
There are also other tasks in the warehouse where the autonomy will increase in the future. After truck unloading, the second thing we’ll take on is order building, which will be more in the aisles of a warehouse. For that, Stretch will be navigating around the warehouse, finding the right pallet it needs to take a box from, and loading it onto a new pallet. This will be a different model with more autonomy; you’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.
What kinds of constraints is Stretch operating under? Do the boxes all have to be stacked neatly in the back of the truck, do they have to be the same size, the same color, etc?
“This will be a different model with more autonomy. You’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.”
If you think about manufacturing, where there's been automation for decades, you can go into a modern manufacturing facility and there are robot arms and conveyors and other machines. But if you look at the actual warehouse space, 90+ percent is manually operated, and that's because of what you just asked about— things that are less structured, where there’s more variety, and it's more challenging for a robot. But this is starting to change. This is really, really early days, and you’re going to be seeing a lot more robots in the warehouse space.
The warehouse robotics industry is going to grow a lot over the next decade, and a lot of that boils down to vision—the ability for robots to navigate and to understand what they’re seeing. Actually seeing boxes in real world scenarios is challenging, especially when there's a lot of variety. We've been testing our machine learning-based box detection system on Pick for a few years now, and it's gotten far enough that we know it’s one of the technical hurdles you need to overcome to succeed in the warehouse.
Can you compare the performance of Stretch to the performance of a human in a box-unloading task?
Stretch can move cases up to 50 pounds which is the OSHA limit for how much a single person's allowed to move. The peak case rate for Stretch is 800 cases per hour. You really need to keep up with the flow of goods throughout the warehouse, and 800 cases per hour should be enough for most applications. This is similar to a really good human; most humans are probably slower, and it’s hard for a human to sustain that rate, and one of the big issues with people doing this jobs is injury rates. Imagine moving really heavy boxes all day, and having to reach up high or bend down to get them—injuries are really common in this area. Truck unloading is one of the hardest jobs in a warehouse, and that’s one of the reasons we’re starting there with Stretch.
Is Stretch safe for humans to be around?
We looked at using collaborative robot arms for Stretch, but they don’t have the combination of strength and speed and reach to do this task. That’s partially just due to the laws of physics—if you want to move a 50lb box really fast, that’s a lot of energy there. So, Stretch does need to maintain separation from humans, but it’s pretty safe when it’s operating in the back of a truck.
In the middle of a warehouse, Stretch will have a couple different modes. When it's traveling around it'll be kind of like an AMR, and use a safety-rated lidar making sure that it slows down or stops as people get closer. If it's parked and the arm is moving, it'll do the same thing, monitoring anyone getting close and either slow down or stop.
How do you see Stretch interacting with other warehouse robots?
For building pallet orders, we can do that in a couple of different ways, and we’re experimenting with partners in the AMR space. So you might have an AMR that moves the pallet around and then rendezvous with Stretch, and Stretch does the manipulation part and moves boxes onto the pallet, and then the AMR scuttles off to the next rendezvous point where maybe a different Stretch meets it. We’re developing prototypes of that behavior now with a few partners. Another way to do it is Stretch can actually pull the pallet around itself and do both tasks. There are two fundamental things that happen in the warehouse: there's movement of goods, and there's manipulation of goods, and Stretch can do both.
You’re aware that Hello Robot has a mobile manipulator called Stretch, right?
Great minds think alike! We know Aaron [Edsinger] from the Google days; we all used to be in the same company, and he’s a great guy. We’re in very different applications and spaces, though— Aaron’s robot is going into research and maybe a little bit into the consumer space, while this robot is on a much bigger scale aimed at industrial applications, so I think there’s actually a lot of space between our robots, in terms of how they’ll be used.
Editor’s Note: We did check in with Aaron Edsinger at Hello Robot, and he sees things a little bit differently. “We're disappointed they chose our name for their robot,” Edsinger told us. “We're seriously concerned about it and considering our options.” We sincerely hope that Boston Dynamics and Hello Robot can come to an amicable solution on this.
What’s the timeline for commercial deployment of Stretch?
This is a prototype of the Stretch robot, and anytime we design a new robot, we always like to build a prototype as quickly as possible so we can figure out what works and what doesn't work. We did that with our bipeds and quadrupeds as well. So, we get an early look at what we need to iterate, because any time you build the first thing, it's not the right thing, and you always need to make changes to get to the final version. We've got about six of those Stretch prototypes operating now. In parallel, our hardware team is finishing up the design of the productized version of Stretch. That version of Stretch looks a lot like the prototype, but every component has been redesigned from the ground up to be manufacturable, to be reliable, and to be higher performance.
For the productized version of Stretch, we’ll build up the first units this summer, and then it’ll go on sale next year. So this is kind of a sneak peak into what the final product will be.
How much does it cost, and will you be selling Stretch, or offering it as a service?
We’re not quite ready to talk about cost yet, but it’ll be cost effective, and similar in cost to existing systems if you were to combine an industrial robot arm, custom gripper, and mobile base. We’re considering both selling and leasing as a service, but we’re not quite ready to narrow it down yet.
Photo: Boston Dynamics
As with all mobile manipulators, what Stretch can do long-term is constrained far more by software than by hardware. With a fast and powerful arm, a mobile base, a solid perception system, and 16 hours of battery life, you can imagine how different grippers could enable all kinds of different capabilities. But we’re getting ahead of ourselves, because it’s a long, long way from getting a prototype to work pretty well to getting robots into warehouses in a way that’s commercially viable long-term, even when the use case is as clear as it seems to be for Stretch.
Stretch also could signal a significant shift in focus for Boston Dynamics. While Blankespoor’s comments about Stretch leveraging Boston Dynamics’ expertise with robots like Spot and Atlas are well taken, Stretch is arguably the most traditional robot that the company has designed, and they’ve done so specifically to be able to sell robots into industry. This is what you do if you’re a robotics company who wants to make money by selling robots commercially, which (historically) has not been what Boston Dynamics is all about. Despite its bonkers valuation, Boston Dynamics ultimately needs to make money, and robots like Stretch are a good way to do it. With that in mind, I wouldn’t be surprised to see more robots like this from Boston Dynamics—robots that leverage the company’s unique technology, but that are designed to do commercially useful tasks in a somewhat less flashy way. And if this strategy keeps Boston Dynamics around (while funding some occasional creative craziness), then I’m all for it. Continue reading →
#439010 Video Friday: Nanotube-Powered Insect ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.
Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.
[ MIT ]
National Robotics Week is April 3-11, 2021!
[ NRW ]
This is in a motion capture environment, but still, super impressive!
[ Paper ]
Thanks Fan!
Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?
[ ETHZ ]
This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.
Um, did they bring it back?
[ Nature ]
Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!
[ Lingkang Zhang ]
Thanks Lingkang!
Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.
[ Vswarm ]
A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.
[ Paper ]
Thanks Poramate!
In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.
[ TUM ]
RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.
[ RaiSim ]
Thanks Fan!
The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.
[ Trossen ]
MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.
Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.
[ Kate Darling ]
The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.
[ Team CoSTAR ]
In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.
[ MIT ]
In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.
[ GRASP Seminar ]
Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”
[ Swiss-Korean Science Club ]
Thanks Fan!
In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”
[ Designerly HRI ] Continue reading →
#439004 Video Friday: A Walking, Wheeling ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
This is a pretty terrible video, I think because it was harvested from WeChat, which is where Tencent decided to premiere its new quadruped robot.
Not bad, right? Its name is Max, it has a top speed of 25 kph thanks to its elbow wheels, and we know almost nothing else about it.
[ Tencent ]
Thanks Fan!
Can't bring yourself to mask-shame others? Build a robot to do it for you instead!
[ GitHub ]
Researchers at Georgia Tech have recently developed an entirely soft, long-stroke electromagnetic actuator using liquid metal, compliant magnetic composites, and silicone polymers. The robot was inspired by the motion of the Xenia coral, which pulses its polyps to circulate oxygen under water to promote photosynthesis.
In this work, power applied to soft coils generates an electromagnetic field, which causes the internal compliant magnet to move upward. This forces the squishy silicone linkages to convert linear to the rotational motion with an arclength of up to 42 mm with a bandwidth up to 30 Hz. This highly deformable, fast, and long-stroke actuator topology can be utilized for a variety of applications from biomimicry to fully-soft grasping to wearables applications.
[ Paper ] via [ Georgia Tech ]
Thanks Noah!
Jueying Mini Lite may look a little like a Boston Dynamics Spot, but according to DeepRobotics, its coloring is based on Bruce Lee's Kung Fu clothes.
[ DeepRobotics ]
Henrique writes, “I would like to share with you the supplementary video of our recent work accepted to ICRA 2021. The video features a quadruped and a full-size humanoid performing dynamic jumps, after a brief animated intro of what direct transcription is. Me and my colleagues have put a lot of hard work into this, and I am very proud of the results.”
Making big robots jump is definitely something to be proud of!
[ SLMC Edinburgh ]
Thanks Henrique!
The finals of the Powered Exoskeleton Race for Cybathlon Global 2020.
[ Cybathlon ]
Thanks Fan!
It's nice that every once in a while, the world can get excited about science and robots.
[ NASA ]
Playing the Imperial March over footage of an army of black quadrupeds may not be sending quite the right message.
[ Unitree ]
Kod*lab PhD students Abriana Stewart-Height, Diego Caporale and Wei-Hsi Chen, with former Kod*lab student Garrett Wenger were on set in the summer of 2019 to operate RHex for the filming of Lapsis, a first feature film by director and screenwriter Noah Hutton.
[ Kod*lab ]
In class 2.008, Design and Manufacturing II, mechanical engineering students at MIT learn the fundamental principles of manufacturing at scale by designing and producing their own yo-yos. Instructors stress the importance of sustainable practices in the global supply chain.
[ MIT ]
A short history of robotics, from ABB.
[ ABB ]
In this paper, we propose a whole-body planning framework that unifies dynamic locomotion and manipulation tasks by formulating a single multi-contact optimal control problem. This is demonstrated in a set of real hardware experiments done in free-motion, such as base or end-effector pose tracking, and while pushing/pulling a heavy resistive door. Robustness against model mismatches and external disturbances is also verified during these test cases.
[ Paper ]
This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking.
Extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.
[ MIT ]
With our SaaS solution, we enable robots to inspect industrial facilities. One of the robots our software supports, is the Boston Dynamics Spot robot. In this video we demonstrate how autonomous industrial inspection with the Boston Dynamics Spot Robot is performed with our teach and repeat solution.
[ Energy Robotics ]
In this week’s episode of Tech on Deck, learn about our first technology demonstration sent to Station: The Robotic Refueling Mission. This tech demo helped us develop the tools and techniques needed to robotically refuel a satellite in space, an important capability for space exploration.
[ NASA ]
At Covariant we are committed to research and development that will bring AI Robotics to the real world. As a part of this, we believe it's important to educate individuals on how these exciting innovations will make a positive, fundamental and global impact for years to come. In this presentation, our co-founder Pieter Abbeel breaks down his thoughts on the current state of play for AI robotics.
[ Covariant ]
How do you fly a helicopter on Mars? It takes Ingenuity and Perseverance. During this technology demo, Farah Alibay and Tim Canham will get into the details of how these craft will manage this incredible task.
[ NASA ]
Complex real-world environments continue to present significant challenges for fielding robotic teams, which often face expansive spatial scales, difficult and dynamic terrain, degraded environmental conditions, and severe communication constraints. Breakthrough technologies call for integrated solutions across autonomy, perception, networking, mobility, and human teaming thrusts. As such, the DARPA OFFSET program and the DARPA Subterranean Challenge seek novel approaches and new insights for discovering and demonstrating these innovative technologies, to help close critical gaps for robotic operations in complex urban and underground environments.
[ UPenn ] Continue reading →