Tag Archives: eyes

#435742 This ‘Useless’ Social Robot ...

The recent high profile failures of some home social robots (and the companies behind them) have made it even more challenging than it was before to develop robots in that space. And it was challenging enough to begin with—making a robot that can autonomous interact with random humans in their homes over a long period of time for a price that people can afford is extraordinarily difficult. However, the massive amount of initial interest in robots like Jibo, Kuri, Vector, and Buddy prove that people do want these things, or at least think they do, and while that’s the case, there’s incentive for other companies to give social home robots a try.

One of those companies is Zoetic, founded in 2107 by Mita Yun and Jitu Das, both ex-Googlers. Their robot, Kiki, is more or less exactly what you’d expect from a social home robot: It’s cute, white, roundish, has big eyes, promises that it will be your “robot sidekick,” and is not cheap: It’s on Kicksterter for $800. Kiki is among what appears to be a sort of tentative second wave of social home robots, where designers have (presumably) had a chance to take everything that they learned from the social home robot pioneers and use it to make things better this time around.

Kiki’s Kickstarter video is, again, more or less exactly what you’d expect from a social home robot crowdfunding campaign:

We won’t get into all of the details on Kiki in this article (the Kickstarter page has tons of information), but a few distinguishing features:

Each Kiki will develop its own personality over time through its daily interactions with its owner, other people, and other Kikis.
Interacting with Kiki is more abstract than with most robots—it can understand some specific words and phrases, and will occasionally use a few specific words or two, but otherwise it’s mostly listening to your tone of voice and responding with sounds rather than speech.
Kiki doesn’t move on its own, but it can operate for up to two hours away from its charging dock.
Depending on how your treat Kiki, it can get depressed or neurotic. It also needs to be fed, which you can do by drawing different kinds of food in the app.
Everything Kiki does runs on-board the robot. It has Wi-Fi connectivity for updates, but doesn’t rely on the cloud for anything in real-time, meaning that your data stays on the robot and that the robot will continue to function even if its remote service shuts down.

It’s hard to say whether features like these are unique enough to help Kiki be successful where other social home robots haven’t been, so we spoke with Zoetic co-founder Mita Yun and asked her why she believes that Kiki is going to be the social home robot that makes it.

IEEE Spectrum: What’s your background?

Mita Yun: I was an only child growing up, and so I always wanted something like Doraemon or Totoro. Something that when you come home it’s there to greet you, not just because it’s programmed to do that but because it’s actually actively happy to see you, and only you. I was so interested in this that I went to study robotics at CMU and then after I graduated I joined Google and worked there for five years. I tended to go for the more risky and more fun projects, but they always got cancelled—the first project I joined was called Android at Home, and then I joined Google Glass, and then I joined a team called Robots for Kids. That project was building educational robots, and then I just realized that when we’re adding technology to something, to a product, we’re actually taking the life away somehow, and the kids were more connected with stuffed animals compared to the educational robots we were building. That project was also cancelled, and in 2017, I left with a coworker of mine (Jitu Das) to bring this dream into reality. And now we’re building Kiki.

“Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless”
—Mita Yun, Zoetic

You started working on Kiki in 2017, when things were already getting challenging for Jibo—why did you decide to start developing a social home robot at that point?

I thought Jibo was great. It had a special magical way of moving, and it was such a new idea that you could have this robot with embodiment and it can actually be your assistant. The problem with Jibo, in my opinion, was that it took too long to fulfill the orders. It took them three to four years to actually manufacture, because it was a very complex piece of hardware, and then during that period of time Alexa and Google Home came out, and they started selling these voice systems for $30 and then you have Jibo for $800. Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless.

Can you elaborate on “completely useless?”

I feel like people are initially connected with robots because they remind them of a character. And it’s the closest we can get to a character other than an organic character like an animal. So we’re connected to a character like when we have a robot in a mall that’s roaming around, even if it looks really ugly, like if it doesn’t have eyes, people still take selfies with it. Why? Because they think it’s a character. And humans are just hardwired to love characters and love stories. With Kiki, we just wanted to build a character that’s alive, we don’t want to have a character do anything super useful.

I understand why other robotics companies are adding Alexa integration to their robots, and I think that’s great. But the dream I had, and the understanding I have about robotics technology, is that for a consumer robot especially, it is very very difficult for the robot to justify its price through usefulness. And then there’s also research showing that the more useless something is, the easier it is to have an emotional connection, so that’s why we want to keep Kiki very useless.

What kind of character are you creating with Kiki?

The whole design principle around Kiki is we want to make it a very vulnerable character. In terms of its status at home, it’s not going to be higher or equal status as the owner, but slightly lower status than the human, and it’s vulnerable and needs you to take care of it in order to grow up into a good personality robot.

We don’t let Kiki speak full English sentences, because whenever it does that, people are going to think it’s at least as intelligent as a baby, which is impossible for robots at this point. And we also don’t let it move around, because when you have it move around, people are going to think “I’m going to call Kiki’s name, and then Kiki is will come to me.” But that is actually very difficult to build. And then also we don’t have any voice integration so it doesn’t tell you about the stock market price and so on.

Photo: Zoetic

Kiki is designed to be “vulnerable,” and it needs you to take care of it so it can “grow up into a good personality robot,” according to its creators.

That sounds similar to what Mayfield did with Kuri, emphasizing an emotional connection rather than specific functionality.

It is very similar, but one of the key differences from Kuri, I think, is that Kuri started with a Kobuki base, and then it’s wrapped into a cute shell, and they added sounds. So Kuri started with utility in mind—navigation is an important part of Kuri, so they started with that challenge. For Kiki, we started with the eyes. The entire thing started with the character itself.

How will you be able to convince your customers to spend $800 on a robot that you’ve described as “useless” in some ways?

Because it’s useless, it’s actually easier to convince people, because it provides you with an emotional connection. I think Kiki is not a utility-driven product, so the adoption cycle is different. For a functional product, it’s very easy to pick up, because you can justify it by saying “I’m going to pay this much and then my life can become this much more efficient.” But it’s also very easy to be replaced and forgotten. For an emotional-driven product, it’s slower to pick up, but once people actually pick it up, they’re going to be hooked—they get be connected with it, and they’re willing to invest more into taking care of the robot so it will grow up to be smarter.

Maintaining value over time has been another challenge for social home robots. How will you make sure that people don’t get bored with Kiki after a few weeks?

Of course Kiki has limits in what it can do. We can combine the eyes, the facial expression, the motors, and lights and sounds, but is it going to be constantly entertaining? So we think of this as, imagine if a human is actually puppeteering Kiki—can Kiki stay interesting if a human is puppeteering it and interacting with the owner? So I think what makes a robot interesting is not just in the physical expressions, but the part in between that and the robot conveying its intentions and emotions.

For example, if you come into the room and then Kiki decides it will turn the other direction, ignore you, and then you feel like, huh, why did the robot do that to me? Did I do something wrong? And then maybe you will come up to it and you will try to figure out why it did that. So, even though Kiki can only express in four different dimensions, it can still make things very interesting, and then when its strategies change, it makes it feel like a new experience.

There’s also an explore and exploit process going on. Kiki wants to make you smile, and it will try different things. It could try to chase its tail, and if you smile, Kiki learns that this works and will exploit it. But maybe after doing it three times, you no longer find it funny, because you’re bored of it, and then Kiki will observe your reactions and be motivated to explore a new strategy.

Photo: Zoetic

Kiki’s creators are hoping that, with an emotionally engaging robot, it will be easier for people to get attached to it and willing to spend time taking care of it.

A particular risk with crowdfunding a robot like this is setting expectations unreasonably high. The emphasis on personality and emotional engagement with Kiki seems like it may be very difficult for the robot to live up to in practice.

I think we invested more than most robotics companies into really building out Kiki’s personality, because that is the single most important thing to us. For Jibo a lot of the focus was in the assistant, and for Kuri, it’s more in the movement. For Kiki, it’s very much in the personality.

I feel like when most people talk about personality, they’re mainly talking about expression. With Kiki, it’s not just in the expression itself, not just in the voice or the eyes or the output layer, it’s in the layer in between—when Kiki receives input, how will it make decisions about what to do? We actually don’t think the personality of Kiki is categorizable, which is why I feel like Kiki has a deeper implementation of how personalities should work. And you’re right, Kiki doesn’t really understand why you’re feeling a certain way, it just reads your facial expressions. It’s maybe not your best friend, but maybe closer to your little guinea pig robot.

Photo: Zoetic

The team behind Kiki paid particular attention to its eyes, and designed the robot to always face the person that it is interacting with.

Is that where you’d put Kiki on the scale of human to pet?

Kiki is definitely not human, we want to keep it very far away from human. And it’s also not a dog or cat. When we were designing Kiki, we took inspiration from mammals because humans are deeply connected to mammals since we’re mammals ourselves. And specifically we’re connected to predator animals. With prey animals, their eyes are usually on the sides of their heads, because they need to see different angles. A predator animal needs to hunt, they need to focus. Cats and dogs are predator animals. So with Kiki, that’s why we made sure the eyes are on one side of the face and the head can actuate independently from the body and the body can turn so it’s always facing the person that it’s paying attention to.

I feel like Kiki is probably does more than a plant. It does more than a fish, because a fish doesn’t look you in the eyes. It’s not as smart as a cat or a dog, so I would just put it in this guinea pig kind of category.

What have you found so far when running user studies with Kiki?

When we were first designing Kiki we went through a whole series of prototypes. One of the earlier prototypes of Kiki looked like a CRT, like a very old monitor, and when we were testing that with people they didn’t even want to touch it. Kiki’s design inspiration actually came from an airplane, with a very angular, futuristic look, but based on user feedback we made it more round and more friendly to the touch. The lights were another feature request from the users, which adds another layer of expressivity to Kiki, and they wanted to see multiple Kikis working together with different personalities. Users also wanted different looks for Kiki, to make it look like a deer or a unicorn, for example, and we actually did take that into consideration because it doesn’t look like any particular mammal. In the future, you’ll be able to have different ears to make it look like completely different animals.

There has been a lot of user feedback that we didn’t implement—I believe we should observe the users reactions and feedback but not listen to their advice. The users shouldn’t be our product designers, because if you test Kiki with 10 users, eight of them will tell you they want Alexa in it. But we’re never going to add Alexa integration to Kiki because that’s not what it’s meant to do.

While it’s far too early to tell whether Kiki will be a long-term success, the Kickstarter campaign is currently over 95 percent funded with 8 days to go, and 34 robots are still available for a May 2020 delivery.

[ Kickstarter ] Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435070 5 Breakthroughs Coming Soon in Augmented ...

Convergence is accelerating disruption… everywhere! Exponential technologies are colliding into each other, reinventing products, services, and industries.

In this third installment of my Convergence Catalyzer series, I’ll be synthesizing key insights from my annual entrepreneurs’ mastermind event, Abundance 360. This five-blog series looks at 3D printing, artificial intelligence, VR/AR, energy and transportation, and blockchain.

Today, let’s dive into virtual and augmented reality.

Today’s most prominent tech giants are leaping onto the VR/AR scene, each driving forward new and upcoming product lines. Think: Microsoft’s HoloLens, Facebook’s Oculus, Amazon’s Sumerian, and Google’s Cardboard (Apple plans to release a headset by 2021).

And as plummeting prices meet exponential advancements in VR/AR hardware, this burgeoning disruptor is on its way out of the early adopters’ market and into the majority of consumers’ homes.

My good friend Philip Rosedale is my go-to expert on AR/VR and one of the foremost creators of today’s most cutting-edge virtual worlds. After creating the virtual civilization Second Life in 2013, now populated by almost 1 million active users, Philip went on to co-found High Fidelity, which explores the future of next-generation shared VR.

In just the next five years, he predicts five emerging trends will take hold, together disrupting major players and birthing new ones.

Let’s dive in…

Top 5 Predictions for VR/AR Breakthroughs (2019-2024)
“If you think you kind of understand what’s going on with that tech today, you probably don’t,” says Philip. “We’re still in the middle of landing the airplane of all these new devices.”

(1) Transition from PC-based to standalone mobile VR devices

Historically, VR devices have relied on PC connections, usually involving wires and clunky hardware that restrict a user’s field of motion. However, as VR enters the dematerialization stage, we are about to witness the rapid rise of a standalone and highly mobile VR experience economy.

Oculus Go, the leading standalone mobile VR device on the market, requires only a mobile app for setup and can be transported anywhere with WiFi.

With a consumer audience in mind, the 32GB headset is priced at $200 and shares an app ecosystem with Samsung’s Gear VR. While Google Daydream are also standalone VR devices, they require a docked mobile phone instead of the built-in screen of Oculus Go.

In the AR space, Lenovo’s standalone Microsoft’s HoloLens 2 leads the way in providing tetherless experiences.

Freeing headsets from the constraints of heavy hardware will make VR/AR increasingly interactive and transportable, a seamless add-on whenever, wherever. Within a matter of years, it may be as simple as carrying lightweight VR goggles wherever you go and throwing them on at a moment’s notice.

(2) Wide field-of-view AR displays

Microsoft’s HoloLens 2 leads the AR industry in headset comfort and display quality. The most significant issue with their prior version was the limited rectangular field of view (FOV).

By implementing laser technology to create a microelectromechanical systems (MEMS) display, however, HoloLens 2 can position waveguides in front of users’ eyes, directed by mirrors. Subsequently enlarging images can be accomplished by shifting the angles of these mirrors. Coupled with a 47 pixel per degree resolution, HoloLens 2 has now doubled its predecessor’s FOV. Microsoft anticipates the release of its headset by the end of this year at a $3,500 price point, first targeting businesses and eventually rolling it out to consumers.

Magic Leap provides a similar FOV but with lower resolution than the HoloLens 2. The Meta 2 boasts an even wider 90-degree FOV, but requires a cable attachment. The race to achieve the natural human 120-degree horizontal FOV continues.

“The technology to expand the field of view is going to make those devices much more usable by giving you bigger than a small box to look through,” Rosedale explains.

(3) Mapping of real world to enable persistent AR ‘mirror worlds’

‘Mirror worlds’ are alternative dimensions of reality that can blanket a physical space. While seated in your office, the floor beneath you could dissolve into a calm lake and each desk into a sailboat. In the classroom, mirror worlds would convert pencils into magic wands and tabletops into touch screens.

Pokémon Go provides an introductory glimpse into the mirror world concept and its massive potential to unite people in real action.

To create these mirror worlds, AR headsets must precisely understand the architecture of the surrounding world. Rosedale predicts the scanning accuracy of devices will improve rapidly over the next five years to make these alternate dimensions possible.

(4) 5G mobile devices reduce latency to imperceptible levels

Verizon has already launched 5G networks in Minneapolis and Chicago, compatible with the Moto Z3. Sprint plans to follow with its own 5G launch in May. Samsung, LG, Huawei, and ZTE have all announced upcoming 5G devices.

“5G is rolling out this year and it’s going to materially affect particularly my work, which is making you feel like you’re talking to somebody else directly face to face,” explains Rosedale. “5G is critical because currently the cell devices impose too much delay, so it doesn’t feel real to talk to somebody face to face on these devices.”

To operate seamlessly from anywhere on the planet, standalone VR/AR devices will require a strong 5G network. Enhancing real-time connectivity in VR/AR will transform the communication methods of tomorrow.

(5) Eye-tracking and facial expressions built in for full natural communication

Companies like Pupil Labs and Tobii provide eye tracking hardware add-ons and software to VR/AR headsets. This technology allows for foveated rendering, which renders a given scene in high resolution only in the fovea region, while the peripheral regions appear in lower resolution, conserving processing power.

As seen in the HoloLens 2, eye tracking can also be used to identify users and customize lens widths to provide a comfortable, personalized experience for each individual.

According to Rosedale, “The fundamental opportunity for both VR and AR is to improve human communication.” He points out that current VR/AR headsets miss many of the subtle yet important aspects of communication. Eye movements and microexpressions provide valuable insight into a user’s emotions and desires.

Coupled with emotion-detecting AI software, such as Affectiva, VR/AR devices might soon convey much more richly textured and expressive interactions between any two people, transcending physical boundaries and even language gaps.

Final Thoughts
As these promising trends begin to transform the market, VR/AR will undoubtedly revolutionize our lives… possibly to the point at which our virtual worlds become just as consequential and enriching as our physical world.

A boon for next-gen education, VR/AR will empower youth and adults alike with holistic learning that incorporates social, emotional, and creative components through visceral experiences, storytelling, and simulation. Traveling to another time, manipulating the insides of a cell, or even designing a new city will become daily phenomena of tomorrow’s classrooms.

In real estate, buyers will increasingly make decisions through virtual tours. Corporate offices might evolve into spaces that only exist in ‘mirror worlds’ or grow virtual duplicates for remote workers.

In healthcare, accuracy of diagnosis will skyrocket, while surgeons gain access to digital aids as they conduct life-saving procedures. Or take manufacturing, wherein training and assembly will become exponentially more efficient as visual cues guide complex tasks.

In the mere matter of a decade, VR and AR will unlock limitless applications for new and converging industries. And as virtual worlds converge with AI, 3D printing, computing advancements and beyond, today’s experience economies will explode in scale and scope. Prepare yourself for the exciting disruption ahead!

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements, and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Mariia Korneeva / Shutterstock.com Continue reading

Posted in Human Robots

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#434854 New Lifelike Biomaterial Self-Reproduces ...

Life demands flux.

Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.

What if we could endow cold, static, lifeless robots with the gift of metabolism?

In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.

Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.

The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.

“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.

“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.

Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.

Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?

Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.

Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”

The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.

Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.

DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.

Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.

Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.

This “enabled a general design strategy for the DASH patterns,” they said.

In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.

These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.

Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.

“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.

Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.

In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.

Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.

Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.

The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.

In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.

A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.

DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.

Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.

“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”

Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading

Posted in Human Robots