Tag Archives: extreme

#439089 Ingenuity’s Chief Pilot Explains How ...

On April 11, the Mars helicopter Ingenuity will take to the skies of Mars for the first time. It will do so fully autonomously, out of necessity—the time delay between Ingenuity’s pilots at the Jet Propulsion Laboratory and Jezero Crater on Mars makes manual or even supervisory control impossible. So the best that the folks at JPL can do is practice as much as they can in simulation, and then hope that the helicopter can handle everything on its own.

Here on Earth, simulation is a critical tool for many robotics applications, because it doesn’t rely on access to expensive hardware, is non-destructive, and can be run in parallel and at faster-than-real-time speeds to focus on solving specific problems. Once you think you’ve gotten everything figured out in simulation, you can always give it a try on the real robot and see how close you came. If it works in real life, great! And if not, well, you can tweak some stuff in the simulation and try again.

For the Mars helicopter, simulation is much more important, and much higher stakes. Testing the Mars helicopter under conditions matching what it’ll find on Mars is not physically possible on Earth. JPL has flown engineering models in Martian atmospheric conditions, and they’ve used an actuated tether to mimic Mars gravity, but there’s just no way to know what it’ll be like flying on Mars until they’ve actually flown on Mars. With that in mind, the Ingenuity team has been relying heavily on simulation, since that’s one of the best tools they have to prepare for their Martian flights. We talk with Ingenuity’s Chief Pilot, Håvard Grip, to learn how it all works.

Ingenuity Facts:
Body Size: a box of tissues

Brains: Qualcomm Snapdragon 801

Weight: 1.8 kilograms

Propulsion: Two 1.2m carbon fiber rotors

Navigation sensors: VGA camera, laser altimeter, inclinometer

Ingenuity is scheduled to make its first flight no earlier than April 11. Before liftoff, the Ingenuity team will conduct a variety of pre-flight checks, including verifying the responsiveness of the control system and spinning the blades up to full speed (2,537 rpm) without lifting off. If everything looks good, the first flight will consist of a 1 meter per second climb to 3 meters, 30 seconds of hover at 3 meters while rotating in place a bit, and then a descent to landing. If Ingenuity pulls this off, that will have made its entire mission a success. There will be more flights over the next few weeks, but all it takes is one to prove that autonomous helicopter flight on Mars is possible.

Last month, we spoke with Mars Helicopter Operations Lead Tim Canham about Ingenuity’s hardware, software, and autonomy, but we wanted to know more about how the Ingenuity team has been using simulation for everything from vehicle design to flight planning. To answer our questions, we talked with JPL’s Håvard Grip, who led the development of Ingenuity’s navigation and flight control systems. Grip also has the title of Ingenuity Chief Pilot, which is pretty awesome. He summarizes this role as “operating the flight control system to make the helicopter do what we want it to do.”

IEEE Spectrum: Can you tell me about the simulation environment that JPL uses for Ingenuity’s flight planning?

Håvard Grip: We developed a Mars helicopter simulation ourselves at JPL, based on a multi-body simulation framework that’s also developed at JPL, called DARTS/DSHELL. That's a system that has been in development at JPL for about 30 years now, and it's been used in a number of missions. And so we took that multibody simulation framework, and based on it we built our own Mars helicopter simulation, put together our own rotor model, our own aerodynamics models, and everything else that's needed in order to simulate a helicopter. We also had a lot of help from the rotorcraft experts at NASA Ames and NASA Langley.

Image: NASA/JPL

Ingenuity in JPL’s flight simulator.

Without being able to test on Mars, how much validation are you able to do of what you’re seeing in simulation?

We can do a fair amount, but it requires a lot of planning. When we made our first real prototype (with a full-size rotor that looked like what we were thinking of putting on Mars) we first spent a lot of time designing it and using simulation tools to guide that design, and when we were sufficiently confident that we were close enough, and that we understood enough about it, then we actually built the thing and designed a whole suite of tests in a vacuum chamber where where we could replicate Mars atmospheric conditions. And those tests were before we tried to fly the helicopter—they were specifically targeted at what we call system identification, which has to do with figuring out what the true properties, the true dynamics of a system are, compared to what we assumed in our models. So then we got to see how well our models did, and in the places where they needed adjustment, we could go back and do that.

The simulation work that we really started after that very first initial lift test, that’s what allowed us to unlock all of the secrets to building a helicopter that can fly on Mars.
—Håvard Grip, Ingenuity Chief Pilot

We did a lot of this kind of testing. It was a big campaign, in several stages. But there are of course things that you can't fully replicate, and you do depend on simulation to tie things together. For example, we can't truly replicate Martian gravity on Earth. We can replicate the atmosphere, but not the gravity, and so we have to do various things when we fly—either make the helicopter very light, or we have to help it a little bit by pulling up on it with a string to offload some of the weight. These things don't fully replicate what it will be like on Mars. We also can't simultaneously replicate the Mars aerodynamic environment and the physical and visual surroundings that the helicopter will be flying in. These are places where simulation tools definitely come in handy, with the ability to do full flight tests from A to B, with the helicopter taking off from the ground, running the flight software that it will be running on board, simulating the images that the navigation camera takes of the ground below as it flies, feeding that back into the flight software, and then controlling it.

To what extent can simulation really compensate for the kinds of physical testing that you can’t do on Earth?

It gives you a few different possibilities. We can take certain tests on Earth where we replicate key elements of the environment, like the atmosphere or the visual surroundings for example, and you can validate your simulation on those parameters that you can test on Earth. Then, you can combine those things in simulation, which gives you the ability to set up arbitrary scenarios and do lots and lots of tests. We can Monte Carlo things, we can do a flight a thousand times in a row, with small perturbations of various parameters and tease out what our sensitivities are to those things. And those are the kinds of things that you can't do with physical tests, both because you can't fully replicate the environment and also because of the resources that would be required to do the same thing a thousand times in a row.

Because there are limits to the physical testing we can do on Earth, there are elements where we know there's more uncertainty. On those aspects where the uncertainty is high, we tried to build in enough margin that we can handle a range of things. And simulation gives you the ability to then maybe play with those parameters, and put them at their outer limits, and test them beyond where the real parameters are going to be to make sure that you have robustness even in those extreme cases.

How do you make sure you’re not relying on simulation too much, especially since in some ways it’s your only option?

It’s about anchoring it in real data, and we’ve done a lot of that with our physical testing. I think what you’re referring to is making your simulation too perfect, and we’re careful to model the things that matter. For example, the simulated sensors that we use have realistic levels of simulated noise and bias in them, the navigation camera images have realistic levels of degradation, we have realistic disturbances from wind gusts. If you don’t properly account for those things, then you’re missing important details. So, we try to be as accurate as we can, and to capture that by overbounding in areas where we have a high degree of uncertainty.

What kinds of simulated challenges have you put the Mars helicopter through, and how do you decide how far to push those challenges?

One example is that we can simulate going over rougher terrain. We can push that, and see how far we can go and still have the helicopter behave the way that we want it to. Or we can inject levels of noise that maybe the real sensors don't see, but you want to just see how far you can push things and make sure that it's still robust.

Where we put the limits on this and what we consider to be realistic is often a challenge. We consider this on a case by case basis—if you have a sensor that you're dealing with, you try to do testing with it to characterize it and understand its performance as much as possible, and you build a level of confidence in it that allows you to find the proper balance.

When it comes to things like terrain roughness, it's a little bit of a different thing, because we're actually picking where we're flying the helicopter. We have made that choice, and we know what the terrain looks like around us, so we don’t have to wonder about that anymore.

Image: NASA/JPL-Caltech/University of Arizona

Satellite image of the Ingenuity flight area.

The way that we’re trying to approach this operationally is that we should be done with the engineering at this point. We’re not depending on going back and resimulating things, other than a few checks here and there.

Are there any examples of things you learned as part of the simulation process that resulted in changes to the hardware or mission?

You know, it’s been a journey. One of the early things that we discovered as part of modeling the helicopter was that the rotor dynamics were quite different for a helicopter on Mars, in particular with respect to how the rotor responds to the up and down bending of the blades because they’re not perfectly rigid. That motion is a very important influence on the overall flight dynamics of the helicopter, and what we discovered as we started modeling was that this motion is damped much less on Mars. Under-damped oscillatory things like that, you kind of figure might pose a control issue, and that is the case here: if you just naively design it as you might a helicopter on Earth, without taking this into account, you could have a system where the response to control inputs becomes very sluggish. So that required changes to the vehicle design from some of the very early concepts, and it led us to make a rotor that’s extremely light and rigid.

The design cycle for the Mars helicopter—it’s not like we could just build something and take it out to the back yard and try it and then come back and tweak it if it doesn’t work. It’s a much bigger effort to build something and develop a test program where you have to use a vacuum chamber to test it. So you really want to get as close as possible up front, on your first iteration, and not have to go back to the drawing board on the basic things.

So how close were you able to get on your first iteration of the helicopter design?

[This video shows] a very early demo which was done more or less just assuming that things were going to behave as they would on Earth, and that we’d be able to fly in a Martian atmosphere just spinning the rotor faster and having a very light helicopter. We were basically just trying to demonstrate that we could produce enough lift. You can see the helicopter hopping around, with someone trying to joystick it, but it turned out to be very hard to control. This was prior to doing any of the modeling that I talked about earlier. But once we started seriously focusing on the modeling and simulation, we then went on to build a prototype vehicle which had a full-size rotor that’s very close to the rotor that will be flying on Mars. One difference is that prototype had cyclic control only on the lower rotor, and later we added cyclic control on the upper rotor as well, and that decision was informed in large part by the work we did in simulation—we’d put in the kinds of disturbances that we thought we might see on Mars, and decided that we needed to have the extra control authority.

How much room do you think there is for improvement in simulation, and how could that help you in the future?

The tools that we have were definitely sufficient for doing the job that we needed to do in terms of building a helicopter that can fly on Mars. But simulation is a compute-intensive thing, and so I think there’s definitely room for higher fidelity simulation if you have the compute power to do so. For a future Mars helicopter, you could get some benefits by more closely coupling together high-fidelity aerodynamic models with larger multi-body models, and doing that in a fast way, where you can iterate quickly. There’s certainly more potential for optimizing things.

Photo: NASA/JPL-Caltech

Ingenuity preparing for flight.

Watching Ingenuity’s first flight take place will likely be much like watching the Perseverance landing—we’ll be able to follow along with the Ingenuity team while they send commands to the helicopter and receive data back, although the time delay will mean that any kind of direct control won’t be possible. If everything goes the way it’s supposed to, there will hopefully be some preliminary telemetry from Ingenuity saying so, but it sounds like we’ll likely have to wait until April 12 before we get pictures or video of the flight itself.

Because Mars doesn’t care what time it is on Earth, the flight will actually be taking place very early on April 12, with the JPL Mission Control livestream starting at 3:30 a.m. EDT (12:30 a.m. PDT). Details are here. Continue reading

Posted in Human Robots

#439066 Video Friday: Festo’s BionicSwift

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.

To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.

During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.

[ Festo ]

While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.

It's quite the technical challenge, but it has the potential to be both more efficient and more effective.

[ Fraunhofer ]

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.

[ MIT ]

Ingenuity is now scheduled to fly on April 11.

[ JPL ]

The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”

[ Zenta ]

It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.

[ SA Police ]

SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.

[ SoftBank ]

MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.

[ MAB Robotics ]

Thanks Jakub!

DoraNose: Smell your way to a better tomorrow.

[ Dorabot ]

Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.

[ Energy Robotics ]

When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.

Now do it from orbit!

[ Squishy Robotics ]

An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.

[ Hybrid Robotics ]

How to prove that your drone is waterproof.

[ UNL ]

Well this ought to be pretty good once it gets out of simulation.

[ Hybrid Robotics ]

MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.

[ Aurora ]

The robots​ of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater​ structures, for which they are tested in the North Sea near Heligoland​.

[ DFKI ]

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

[ 60 Minutes ]

In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.

[ ICRA 2020 ]

In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.

[ Stanford HAI ]

This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”

The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.

[ UPenn ] Continue reading

Posted in Human Robots

#439036 Video Friday: Shadow Plays Jenga, and ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Shadow Robot team couldn't resist! Our Operator, Joanna, is using the Shadow Teleoperation System which, fun and games aside, can help those in difficult, dangerous and distant jobs.

Shadow could challenge this MIT Jenga-playing robot, but I bet they wouldn't win:

[ Shadow Robot ]

Digit is gradually stomping the Agility Robotics logo into a big grassy field fully autonomously.

[ Agility Robotics ]

This is a pretty great and very short robotic magic show.

[ Mario the Magician ]

A research team at the Georgia Institute of Technology has developed a modular solution for drone delivery of larger packages without the need for a complex fleet of drones of varying sizes. By allowing teams of small drones to collaboratively lift objects using an adaptive control algorithm, the strategy could allow a wide range of packages to be delivered using a combination of several standard-sized vehicles.

[ GA Tech ]

I've seen this done using vision before, but Flexiv's Rizon 4s can keep a ball moving along a specific trajectory using only force sensing and control.

[ Flexiv ]

Thanks Yunfan!

This combination of a 3D aerial projection system and a sensing interface can be used as an interactive and intuitive control system for things like robot arms, but in this case, it's being used to make simulated pottery. Much less messy than the traditional way of doing it.

More details on Takafumi Matsumaru's work at the Bio-Robotics & Human-Mechatronics Laboratory at Waseda University at the link below.

[ BLHM ]

U.S. Vice President Kamala Harris called astronauts Shannon Walker and Kate Rubins on the ISS, and they brought up Astrobee, at which point Shannon reaches over and rips Honey right off of her charging dock to get her on camera.

[ NASA ]

Here's a quick three minute update on Perseverance and Ingenuity from JPL.

[ Mars 2020 ]

Rigid grippers used in existing aerial manipulators require precise positioning to achieve successful grasps and transmit large contact forces that may destabilize the drone. This limits the speed during grasping and prevents “dynamic grasping,” where the drone attempts to grasp an object while moving. On the other hand, biological systems (e.g. birds) rely on compliant and soft parts to dampen contact forces and compensate for grasping inaccuracy, enabling impressive feats. This paper presents the first prototype of a soft drone—a quadrotor where traditional (i.e. rigid) landing gears are replaced with a soft tendon-actuated gripper to enable aggressive grasping.

[ MIT ]

In this video we present results from a field deployment inside the Løkken Mine underground pyrite mine in Norway. The Løkken mine was operative from 1654 to 1987 and contains narrow but long corridors, alongside vast rooms and challenging vertical stopes. In this field study we evaluated selected autonomous exploration and visual search capabilities of a subset of the aerial robots of Team CERBERUS towards the goal of complete subterranean autonomy.

[ Team CERBERUS ]

What you can do with a 1,000 FPS projector with a high speed tracking system.

[ Ishikawa Group ]

ANYbotics’ collaboration with BASF, one of the largest global chemical manufacturers, displays the efficiency, quality, and scalability of robotic inspection and data-collection capabilities in complex industrial environments.

[ ANYbotics ]

Does your robot arm need a stylish jacket?

[ Fraunhofer ]

Trossen Robotics unboxes a Unitree A1, and it's actually an unboxing where they have to figure out everything from scratch.

[ Trossen ]

Robots have learned to drive cars, assist in surgeries―and vacuum our floors. But can they navigate the unwritten rules of a busy sidewalk? Until they can, robotics experts Leila Takayama and Chris Nicholson believe, robots won’t be able to fulfill their immense potential. In this conversation, Chris and Leila explore the future of robotics and the role open source will play in it.

[ Red Hat ]

Christoph Bartneck's keynote at the 6th Joint UAE Symposium on Social Robotics, focusing on what roles robots can play during the Covid crisis and why so many social robots fail in the market.

[ HIT Lab ]

Decision-making based on arbitrary criteria is legal in some contexts, such as employment, and not in others, such as criminal sentencing. As algorithms replace human deciders, HAI-EIS fellow Kathleen Creel argues arbitrariness at scale is morally and legally problematic. In this HAI seminar, she explains how the heart of this moral issue relates to domination and a lack of sufficient opportunity for autonomy. It relates in interesting ways to the moral wrong of discrimination. She proposes technically informed solutions that can lessen the impact of algorithms at scale and so mitigate or avoid the moral harm identified.

[ Stanford HAI ]

Sawyer B. Fuller speaks on Autonomous Insect-Sized Robots at the UC Berkeley EECS Colloquium series.

Sub-gram (insect-sized) robots have enormous potential that is largely untapped. From a research perspective, their extreme size, weight, and power (SWaP) constraints also forces us to reimagine everything from how they compute their control laws to how they are fabricated. These questions are the focus of the Autonomous Insect Robotics Laboratory at the University of Washington. I will discuss potential applications for insect robots and recent advances from our group. These include the first wireless flights of a sub-gram flapping-wing robot that weighs barely more than a toothpick. I will describe efforts to expand its capabilities, including the first multimodal ground-flight locomotion, the first demonstration of steering control, and how to find chemical plume sources by integrating the smelling apparatus of a live moth. I will also describe a backpack for live beetles with a steerable camera and conceptual design of robots that could scale all the way down to the “gnat robots” first envisioned by Flynn & Brooks in the ‘80s.

[ UC Berkeley ]

Thanks Fan!

Joshua Vander Hook, Computer Scientist, NIAC Fellow, and Technical Group Supervisor at NASA JPL, presents an overview of the AI Group(s) at JPL, and recent work on single and multi-agent autonomous systems supporting space exploration, Earth science, NASA technology development, and national defense programs.

[ UMD ] Continue reading

Posted in Human Robots

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots

#438801 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots