Tag Archives: extension
#437373 Microsoft’s New Deepfake Detector Puts ...
The upcoming US presidential election seems set to be something of a mess—to put it lightly. Covid-19 will likely deter millions from voting in person, and mail-in voting isn’t shaping up to be much more promising. This all comes at a time when political tensions are running higher than they have in decades, issues that shouldn’t be political (like mask-wearing) have become highly politicized, and Americans are dramatically divided along party lines.
So the last thing we need right now is yet another wrench in the spokes of democracy, in the form of disinformation; we all saw how that played out in 2016, and it wasn’t pretty. For the record, disinformation purposely misleads people, while misinformation is simply inaccurate, but without malicious intent. While there’s not a ton tech can do to make people feel safe at crowded polling stations or up the Postal Service’s budget, tech can help with disinformation, and Microsoft is trying to do so.
On Tuesday the company released two new tools designed to combat disinformation, described in a blog post by VP of Customer Security and Trust Tom Burt and Chief Scientific Officer Eric Horvitz.
The first is Microsoft Video Authenticator, which is made to detect deepfakes. In case you’re not familiar with this wicked byproduct of AI progress, “deepfakes” refers to audio or visual files made using artificial intelligence that can manipulate peoples’ voices or likenesses to make it look like they said things they didn’t. Editing a video to string together words and form a sentence someone didn’t say doesn’t count as a deepfake; though there’s manipulation involved, you don’t need a neural network and you’re not generating any original content or footage.
The Authenticator analyzes videos or images and tells users the percentage chance that they’ve been artificially manipulated. For videos, the tool can even analyze individual frames in real time.
Deepfake videos are made by feeding hundreds of hours of video of someone into a neural network, “teaching” the network the minutiae of the person’s voice, pronunciation, mannerisms, gestures, etc. It’s like when you do an imitation of your annoying coworker from accounting, complete with mimicking the way he makes every sentence sound like a question and his eyes widen when he talks about complex spreadsheets. You’ve spent hours—no, months—in his presence and have his personality quirks down pat. An AI algorithm that produces deepfakes needs to learn those same quirks, and more, about whoever the creator’s target is.
Given enough real information and examples, the algorithm can then generate its own fake footage, with deepfake creators using computer graphics and manually tweaking the output to make it as realistic as possible.
The scariest part? To make a deepfake, you don’t need a fancy computer or even a ton of knowledge about software. There are open-source programs people can access for free online, and as far as finding video footage of famous people—well, we’ve got YouTube to thank for how easy that is.
Microsoft’s Video Authenticator can detect the blending boundary of a deepfake and subtle fading or greyscale elements that the human eye may not be able to see.
In the blog post, Burt and Horvitz point out that as time goes by, deepfakes are only going to get better and become harder to detect; after all, they’re generated by neural networks that are continuously learning from and improving themselves.
Microsoft’s counter-tactic is to come in from the opposite angle, that is, being able to confirm beyond doubt that a video, image, or piece of news is real (I mean, can McDonald’s fries cure baldness? Did a seal slap a kayaker in the face with an octopus? Never has it been so imperative that the world know the truth).
A tool built into Microsoft Azure, the company’s cloud computing service, lets content producers add digital hashes and certificates to their content, and a reader (which can be used as a browser extension) checks the certificates and matches the hashes to indicate the content is authentic.
Finally, Microsoft also launched an interactive “Spot the Deepfake” quiz it developed in collaboration with the University of Washington’s Center for an Informed Public, deepfake detection company Sensity, and USA Today. The quiz is intended to help people “learn about synthetic media, develop critical media literacy skills, and gain awareness of the impact of synthetic media on democracy.”
The impact Microsoft’s new tools will have remains to be seen—but hey, we’re glad they’re trying. And they’re not alone; Facebook, Twitter, and YouTube have all taken steps to ban and remove deepfakes from their sites. The AI Foundation’s Reality Defender uses synthetic media detection algorithms to identify fake content. There’s even a coalition of big tech companies teaming up to try to fight election interference.
One thing is for sure: between a global pandemic, widespread protests and riots, mass unemployment, a hobbled economy, and the disinformation that’s remained rife through it all, we’re going to need all the help we can get to make it through not just the election, but the rest of the conga-line-of-catastrophes year that is 2020.
Image Credit: Darius Bashar on Unsplash Continue reading
#436414 Japanese Researchers Teaching Robots to ...
When mobile manipulators eventually make it into our homes, self-repair is going to be a very important function. Hopefully, these robots will be durable enough that they won’t need to be repaired very often, but from time to time they’ll almost certainly need minor maintenance. At Humanoids 2019 in Toronto, researchers from the University of Tokyo showed how they taught a PR2 to perform simple repairs on itself by tightening its own screws. And using that skill, the robot was also able to augment itself, adding accessories like hooks to help it carry more stuff. Clever robot!
To keep things simple, the researchers provided the robot with CAD data that tells it exactly where all of its screws are.
At the moment, the robot can’t directly detect on its own whether a particular screw needs tightening, although it can tell if its physical pose doesn’t match its digital model, which suggests that something has gone wonky. It can also check its screws autonomously from time to time, or rely on a human physically pointing out that it has a screw loose, using the human’s finger location to identify which screw it is. Another challenge is that most robots, like most humans, are limited in the areas on themselves that they can comfortably reach. So to tighten up everything, they might have to find themselves a robot friend to help, just like humans help each other put on sunblock.
The actual tightening is either super easy or quite complicated, depending on the location and orientation of the screw. If the robot is lucky, it can just use its continuous wrist rotation for tightening, but if a screw is located in a tight position that requires an Allen wrench, the robot has to regrasp the tool over and over as it incrementally tightens the screw.
Image: University of Tokyo
In one experiment, the researchers taught a PR2 robot to attach a hook to one of its shoulders. The robot uses one hand to grasp the hook and another hand to grasp a screwdriver. The researchers tested the hook by hanging a tote bag on it.
The other neat trick that a robot can do once it can tighten screws on its own body is to add new bits of hardware to itself. PR2 was thoughtfully designed with mounting points on its shoulders (or maybe technically its neck) and head, and it turns out that it can reach these points with its manipulators, allowing to modify itself, as the researchers explain:
When PR2 wants to have a lot of things, the only two hands are not enough to realize that. So we let PR2 to use a bag the same as we put it on our shoulder. PR2 started attaching the hook whose pose is calculated with self CAD data with a driver on his shoulder in order to put a bag on his shoulder. PR2 finished attaching the hook, and the people put a lot of cans in a tote bag and put it on PR2’s shoulder.
“Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver,” by Takayuki Murooka, Kei Okada, and Masayuki Inaba from the University of Tokyo, was presented at Humanoids 2019 in Toronto, Canada. Continue reading