Tag Archives: exist
#435691 Squeezing Rocket Fuel From Moon Rocks
Illustration: John MacNeill
Engineers and Architects Are Already Designing Lunar Habitats
Squeezing Rocket Fuel From Moon Rocks
Robots Will Navigate the Moon With Maps They Make Themselves
Kim Stanley Robinson Built a Moon Base in His Mind
The most valuable natural resource on the moon may be water. In addition to sustaining lunar colonists, it could also be broken down into its constituent elements—hydrogen and oxygen—and used to make rocket propellant.
Although the ancients called the dark areas on the moon maria (Latin for “seas”), it has long been clear that liquid water can’t exist on the lunar surface, where it would swiftly evaporate. Since the 1960s, though, scientists have hypothesized that the moon indeed harbors water, in the form of ice. Because the moon has a very small axial tilt—just 1.5 degrees—the floors of many polar craters remain in perpetual darkness. Water could thus condense and survive in such polar “cold traps,” where it might one day be mined.
1/5
Water Water Everywhere: Finding rich deposits of ice and extracting it should be possible but will be technically challenging for lunar settlers. Illustration: John MacNeill
2/5
Mapping the Moon: Several lunar missions have produced strong evidence of water ice. A NASA instrument called the Moon Mineralogy Mapper (M3) found indications of water ice on the permanently shadowed floors of some polar craters. However, the measurements suggest that only a small fraction of cold traps contain ice [colored areas], and that the ice is probably mixed with lunar regolith. Data source.
3/5
Rover-Mounted Drill: The most straightforward strategy for extracting water from polar ice deposits uses a rover-mounted drill. Honeybee Robotics has designed a Planetary Volatiles Extractor with a heated auger, which would cause any water ice in the drilled regolith to vaporize. That vapor would then move through a tube to a condenser unit, where it would turn back into ice. Illustration: John MacNeill
4/5
Thermal Mining: A more ambitious scheme for extracting water from the moon is “thermal mining.” Researchers at the Colorado School of Mines have proposed redirecting the sun’s rays , using heliostats mounted on a crater rim. Water trapped in the regolith would turn into vapor that would be collected in a large tent, then vented into refrigerated cold traps, where it would condense as pure water ice. Illustration: John MacNeill
5/5
Compressed-Gas Transport: To produce rocket fuel from water ice would require an electrolyzer to break the water into hydrogen and oxygen, which would then be compressed and stored for later use. In situ production would also require vehicles to transport the processed fuel to rocket pads. Illustration: John MacNeill
Previous
Next Continue reading
#435575 How an AI Startup Designed a Drug ...
Discovering a new drug can take decades, billions of dollars, and untold man hours from some of the smartest people on the planet. Now a startup says it’s taken a significant step towards speeding the process up using AI.
The typical drug discovery process involves carrying out physical tests on enormous libraries of molecules, and even with the help of robotics it’s an arduous process. The idea of sidestepping this by using computers to virtually screen for promising candidates has been around for decades. But progress has been underwhelming, and it’s still not a major part of commercial pipelines.
Recent advances in deep learning, however, have reignited hopes for the field, and major pharma companies have started tying up with AI-powered drug discovery startups. And now Insilico Medicine has used AI to design a molecule that effectively targets a protein involved in fibrosis—the formation of excess fibrous tissue—in mice in just 46 days.
The platform the company has developed combines two of the hottest sub-fields of AI: the generative adversarial networks, or GANs, which power deepfakes, and reinforcement learning, which is at the heart of the most impressive game-playing AI advances of recent years.
In a paper in Nature Biotechnology, the company’s researchers describe how they trained their model on all the molecules already known to target this protein as well as many other active molecules from various datasets. The model was then used to generate 30,000 candidate molecules.
Unlike most previous efforts, they went a step further and selected the most promising molecules for testing in the lab. The 30,000 candidates were whittled down to just 6 using more conventional drug discovery approaches and were then synthesized in the lab. They were put through increasingly stringent tests, but the leading candidate was found to be effective at targeting the desired protein and behaved as one would hope a drug would.
The authors are clear that the results are just a proof-of-concept, which company CEO Alex Zhavoronkov told Wired stemmed from a challenge set by a pharma partner to design a drug as quickly as possible. But they say they were able to carry out the process faster than traditional methods for a fraction of the cost.
There are some caveats. For a start, the protein being targeted is already very well known and multiple effective drugs exist for it. That gave the company a wealth of data to train their model on, something that isn’t the case for many of the diseases where we urgently need new drugs.
The company’s platform also only targets the very initial stages of the drug discovery process. The authors concede in their paper that the molecules would still take considerable optimization in the lab before they’d be true contenders for clinical trials.
“And that is where you will start to begin to commence to spend the vast piles of money that you will eventually go through in trying to get a drug to market,” writes Derek Lowe in his blog In The Pipeline. The part of the discovery process that the platform tackles represents a tiny fraction of the total cost of drug development, he says.
Nonetheless, the research is a definite advance for virtual screening technology and an important marker of the potential of AI for designing new medicines. Zhavoronkov also told Wired that this research was done more than a year ago, and they’ve since adapted the platform to go after harder drug targets with less data.
And with big pharma companies desperate to slash their ballooning development costs and find treatments for a host of intractable diseases, they can use all the help they can get.
Image Credit: freestocks.org / Unsplash Continue reading