Tag Archives: evolving
#435646 Video Friday: Kiki Is a New Social Robot ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
The DARPA Subterranean Challenge tunnel circuit takes place in just a few weeks, and we’ll be there!
[ DARPA SubT ]
Time lapse video of robotic arm on NASA’s Mars 2020 rover handily maneuvers 88-pounds (40 kilograms) worth of sensor-laden turret as it moves from a deployed to stowed configuration.
If you haven’t read our interview with Matt Robinson, now would be a great time, since he’s one of the folks at JPL who designed this arm.
[ Mars 2020 ]
Kiki is a small, white, stationary social robot with an evolving personality who promises to be your friend and costs $800 and is currently on Kickstarter.
The Kickstarter page is filled with the same type of overpromising that we’ve seen with other (now very dead) social robots: Kiki is “conscious,” “understands your feelings,” and “loves you back.” Oof. That said, we’re happy to see more startups trying to succeed in this space, which is certainly one of the toughest in consumer electronics, and hopefully they’ve been learning from the recent string of failures. And we have to say Kiki is a cute robot. Its overall design, especially the body mechanics and expressive face, look neat. And kudos to the team—the company was founded by two ex-Googlers, Mita Yun and Jitu Das—for including the “unedited prototype videos,” which help counterbalance the hype.
Another thing that Kiki has going for it is that everything runs on the robot itself. This simplifies privacy and means that the robot won’t partially die on you if the company behind it goes under, but also limits how clever the robot will be able to be. The Kickstarter campaign is already over a third funded, so…We’ll see.
[ Kickstarter ]
When your UAV isn’t enough UAV, so you put a UAV on your UAV.
[ CanberraUAV ]
ABB’s YuMi is testing ATMs because a human trying to do this task would go broke almost immediately.
[ ABB ]
DJI has a fancy new FPV system that features easy setup, digital HD streaming at up to 120 FPS, and <30ms latency.
If it looks expensive, that’s because it costs $930 with the remote included.
[ DJI ]
Honeybee Robotics has recently developed a regolith excavation and rock cleaning system for NASA JPL’s PUFFER rovers. This system, called POCCET (PUFFER-Oriented Compact Cleaning and Excavation Tool), uses compressed gas to perform all excavation and cleaning tasks. Weighing less than 300 grams with potential for further mass reduction, POCCET can be used not just on the Moon, but on other Solar System bodies such as asteroids, comets, and even Mars.
[ Honeybee Robotics ]
DJI’s 2019 RoboMaster tournament, which takes place this month in Shenzen, looks like it’ll be fun to watch, with a plenty of action and rules that are easy to understand.
[ RoboMaster ]
Robots and baked goods are an automatic Video Friday inclusion.
Wow I want a cupcake right now.
[ Soft Robotics ]
The ICRA 2019 Best Paper Award went to Michelle A. Lee at Stanford, for “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks.”
The ICRA video is here, and you can find the paper at the link below.
[ Paper ] via [ RoboHub ]
Cobalt Robotics put out a bunch of marketing-y videos this week, but this one reasonably interesting, even if you’re familiar with what they’re doing over there.
[ Cobalt Robotics ]
RightHand Robotics launched RightPick2 with a gala event which looked like fun as long as you were really, really in to robots.
[ RightHand Robotics ]
Thanks Jeff!
This video presents a framework for whole-body control applied to the assistive robotic system EDAN. We show how the proposed method can be used for a task like open, pass through and close a door. Also, we show the efficiency of the whole-body coordination with controlling the end-effector with respect to a fixed reference. Additionally, showing how easy the system can be manually manoeuvred by direct interaction with the end-effector, without the need for an extra input device.
[ DLR ]
You’ll probably need to turn on auto-translated subtitles for most of this, but it’s worth it for the adorable little single-seat robotic car designed to help people get around airports.
[ ZMP ]
In this week’s episode of Robots in Depth, Per speaks with Gonzalo Rey from Moog about their fancy 3D printed integrated hydraulic actuators.
Gonzalo talks about how Moog got started with hydraulic control,taking part in the space program and early robotics development. He shares how Moog’s technology is used in fly-by-wire systems in aircraft and in flow control in deep space probes. They have even reached Mars.
[ Robots in Depth ] Continue reading
#435119 Are These Robots Better Than You at ...
Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.
But warehouses and offices aren’t the only places where robots are lining up next to humans.
Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.
Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.
As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.
Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.
Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.
Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.
Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.
Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.
The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.
Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.
It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.
Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.
In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.
Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.
In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.
On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.
We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.
However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.
Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading
#434701 3 Practical Solutions to Offset ...
In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.
The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.
As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?
Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.
First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.
Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.
Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.
At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.
Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.
Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.
Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.
Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.
Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.
Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.
Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).
The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?
Figure 2. Labor laws have historically adjusted as technology and society progressed
Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.
A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.
Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.
Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.
We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.
However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.
Note: The full paper this article is based on is available here.
Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading
#434532 How Microrobots Will Fix Our Roads and ...
Swarms of microrobots will scuttle along beneath our roads and pavements, finding and fixing leaky pipes and faulty cables. Thanks to their efforts, we can avoid costly road work that costs billions of dollars each year—not to mention frustrating traffic delays.
That is, if a new project sponsored by the U.K. government is a success. Recent developments in the space seem to point towards a bright future for microrobots.
Microrobots Saving Billions
Each year, around 1.5 million road excavations take place across the U.K. Many are due to leaky pipes and faulty cables that necessitate excavation of road surfaces in order to fix them. The resulting repairs, alongside disruptions to traffic and businesses, are estimated to cost a whopping £6.3 billion ($8 billion).
A consortium of scientists, led by University of Sheffield Professor Kirill Horoshenkov, are planning to use microrobots to negate most of these costs. The group has received a £7.2 million ($9.2 million) grant to develop and build their bots.
According to Horoshenkov, the microrobots will come in two versions. One is an inspection bot, which will navigate along underground infrastructure and examine its condition via sonar. The inspectors will be complemented by worker bots capable of carrying out repairs with cement and adhesives or cleaning out blockages with a high-powered jet. The inspector bots will be around one centimeter long and possibly autonomous, while the worker bots will be slightly larger and steered via remote control.
If successful, it is believed the bots could potentially save the U.K. economy around £5 billion ($6.4 billion) a year.
The U.K. government has set aside a further £19 million ($24 million) for research into robots for hazardous environments, such as nuclear decommissioning, drones for oil pipeline monitoring, and artificial intelligence software to detect the need for repairs on satellites in orbit.
The Lowest-Hanging Fruit
Microrobots like the ones now under development in the U.K. have many potential advantages and use cases. Thanks to their small size they can navigate tight spaces, for example in search and rescue operations, and robot swarm technology would allow them to collaborate to perform many different functions, including in construction projects.
To date, the number of microrobots in use is relatively limited, but that could be about to change, with bots closing in on other types of inspection jobs, which could be considered one of the lowest-hanging fruits.
Engineering firm Rolls-Royce (not the car company, but the one that builds aircraft engines) is looking to use microrobots to inspect some of the up to 25,000 individual parts that make up an engine. The microrobots use the cockroach as a model, and Rolls Royce believes they could save engineers time when performing the maintenance checks that can take over a month per engine.
Even Smaller Successes
Going further down in scale, recent years have seen a string of successes for nanobots. For example, a team of researchers at the Femto-ST Institute have used nanobots to build what is likely the world’s smallest house (if this isn’t a category at Guinness, someone needs to get on the phone with them), which stands a ‘towering’ 0.015 millimeters.
One of the areas where nanobots have shown great promise is in medicine. Several studies have shown how the minute bots are capable of delivering drugs directly into dense biological tissue, which can otherwise be highly challenging to target directly. Such delivery systems have a great potential for improving the treatment of a wide range of ailments and illnesses, including cancer.
There’s no question that the ecosystem of microrobots and nanobots is evolving. While still in their early days, the above successes point to a near-future boom in the bots we may soon refer to as our ‘littlest everyday helpers.’
Image Credit: 5nikolas5 / Shutterstock.com Continue reading