Tag Archives: evolving

#439032 To Learn To Deal With Uncertainty, This ...

AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.

But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.

“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”

His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.

“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.

In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.

Gif: MIT Aerospace Controls Laboratory

In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).

Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.

But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.

This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.

“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading

Posted in Human Robots

#438762 When Robots Enter the World, Who Is ...

Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.

Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?

Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.

This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.

“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics

Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?

For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:

Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?

Péter Fankhauser, CEO, ANYbotics:

We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.

Robert Playter, CEO, Boston Dynamics:

Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.

Ryan Gariepy, CTO, Clearpath Robotics:

We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.

More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.

Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.

Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.

“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics

What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.

Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.

Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.

How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.

Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.

Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.

“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics

What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!

Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.

Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.

As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.

We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading

Posted in Human Robots

#438294 Video Friday: New Entertainment Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Engineered Arts' latest Mesmer entertainment robot is Cleo. It sings, gesticulates, and even does impressions.

[ Engineered Arts ]

I do not know what this thing is or what it's saying but Panasonic is going to be selling them and I will pay WHATEVER. IT. COSTS.

Slightly worrisome is that Google Translate persistently thinks that part of the description involves “sleeping and flatulence.”

[ Panasonic ] via [ RobotStart ]

Spot Enterprise is here to help you safely ignore every alarm that goes off at work while you're snug at home in your jammies drinking cocoa.

That Spot needs a bath.

If you missed the launch event (with more on the arm), check it out here:

[ Boston Dynamics ]

PHASA-35, a 35m wingspan solar-electric aircraft successfully completed its maiden flight in Australia, February 2020. Designed to operate unmanned in the stratosphere, above the weather and conventional air traffic, PHASA-35 offers a persistent and affordable alternative to satellites combined with the flexibility of an aircraft, which could be used for a range of valuable applications including forest fire detection and maritime surveillance.

[ BAE Systems ]

As part of the Army Research Lab’s (ARL) Robotics Collaborative Technology Alliance (RCTA), we are developing new planning and control algorithms for quadrupedal robots. The goal of our project is to equip the robot LLAMA, developed by NASA JPL, with the skills it needs to move at operational tempo over difficult terrain to keep up with a human squad. This requires innovative perception, planning, and control techniques to make the robot both precise in execution for navigating technical obstacles and robust enough to reject disturbances and recover from unknown errors.

[ IHMC ]

Watch what happens to this drone when it tries to install a bird diverter on a high voltage power line:

[ GRVC ]

Soldiers navigate a wide variety of terrains to successfully complete their missions. As human/agent teaming and artificial intelligence advance, the same flexibility will be required of robots to maneuver across diverse terrain and become effective combat teammates.

[ Army ]

The goal of the GRIFFIN project is to create something similar to sort of robotic bird, which almost certainly won't look like this concept rendering.

While I think this research is great, at what point is it in fact easier to just, you know, train an actual bird?

[ GRIFFIN ]

Paul Newman narrates this video from two decades ago, which is a pretty neat trick.

[ Oxford Robotics Institute ]

The first step towards a LEGO-based robotic McMuffin creator is cracking and separating eggs.

[ Astonishing Studios ] via [ BB ]

Some interesting soft robotics projects at the University of Southern Denmark.

[ SDU ]

Chong Liu introduces Creature_02, his final presentation for Hod Lipson's Robotics Studio course at Columbia.

[ Chong Liu ]

The world needs more robot blimps.

[ Lab INIT Robots ]

Finishing its duty early, the KR CYBERTECH nano uses this time to play basketball.

[ Kuka ]

senseFly has a new aerial surveying drone that they call “affordable,” although they don't say what the price is.

[ senseFly ]

In summer 2020 participated several science teams of the ETH Zurich at the “Art Safiental” in the mountains of Graubunden. After the scientists packed their hiking gear and their robots, their only mission was “over hill and dale to the summit”. How difficult will it be to reach the summit with a legged robot and an exosceletton? What's the relation of synesthetic dance and robotic? How will the hikers react to these projects?

[ Rienerschnitzel Films ]

Thanks Robert!

Karen Liu: How robots perceive the physical world. A specialist in computer animation expounds upon her rapidly evolving specialty, known as physics-based simulation, and how it is helping robots become more physically aware of the world around them.

[ Stanford ]

This week's UPenn GRASP On Robotics seminar is by Maria Chiara Carrozza from Scuola Superiore Sant’Anna, on “Biorobotics for Personal Assistance – Translational Research and Opportunities for Human-Centered Developments.”

The seminar will focus on the opportunities and challenges offered by the digital transformation of healthcare which was accelerated in the COVID-19 Pandemia. In this framework rehabilitation and social robotics can play a fundamental role as enabling technologies for providing innovative therapies and services to patients even at home or in remote environments.

[ UPenn ] Continue reading

Posted in Human Robots

#437236 Why We Need Mass Automation to ...

The scale of goods moving around the planet at any moment is staggering. Raw materials are dug up in one country, spun into parts and pieces in another, and assembled into products in a third. Crossing oceans and continents, they find their way to a local store or direct to your door.

Magically, a roll of toilet paper, power tool, or tube of toothpaste is there just when you need it.

Even more staggering is that this whole system, the global supply chain, works so well that it’s effectively invisible most of the time. Until now, that is. The pandemic has thrown a floodlight on the inner workings of this modern wonder—and it’s exposed massive vulnerabilities.

The e-commerce supply chain is an instructive example. As the world went into lockdown, and everything non-essential went online, demand for digital fulfillment skyrocketed.

Even under “normal” conditions, most e-commerce warehouses were struggling to meet demand. But Covid-19 has further strained the ability to cope with shifting supply, an unprecedented tidal wave of orders, and labor shortages. Local stores are running out of key products. Online grocers and e-commerce platforms are suspending some home deliveries, restricting online purchases of certain items, and limiting new customers. The whole system is being severely tested.

Why? Despite an abundance of 21st century technology, we’re stuck in the 20th century.

Today’s supply chain consists of fleets of ships, trucks, warehouses, and importantly, people scattered around the world. While there are some notable instances of advanced automation, the overwhelming majority of work is still manual, resembling a sort of human-powered bucket brigade, with people wandering around warehouses or standing alongside conveyor belts. Each package of diapers or bottle of detergent ordered by an online customer might be touched dozens of times by warehouse workers before finding its way into a box delivered to a home.

The pandemic has proven the critical need for innovation due to increased demand, concerns about the health and safety of workers, and traceability and safety of products and services.

At the 2020 World Economic Forum, there was much discussion about the ongoing societal transformation in which humans and machines work in tandem, automating and augmenting the way we get things done. At the time, pre-pandemic, debate trended toward skepticism and fear of job losses, with some even questioning the ethics and need for these technologies.

Now, we see things differently. To make the global supply chain more resilient to shocks like Covid-19, we must look to technology.

Perfecting the Global Supply Chain: The Massive ‘Matter Router’
Technology has faced and overcome similar challenges in the past.

World War II, for example, drove innovation in techniques for rapid production of many products on a large scale, including penicillin. We went from the availability of one dose of the drug in 1941, to four million sterile packages of the drug every month four years later.

Similarly, today’s companies, big and small, are looking to automation, robotics, and AI to meet the pandemic head on. These technologies are crucial to scaling the infrastructure that will fulfill most of the world’s e-commerce and food distribution needs.

You can think of this new infrastructure as a rapidly evolving “matter router” that will employ increasingly complex robotic systems to move products more freely and efficiently.

Robots powered by specialized AI software, for example, are already learning to adapt to changes in the environment, using the most recent advances in industrial robotics and machine learning. When customers suddenly need to order dramatically new items, these robots don’t need to stop or be reprogrammed. They can perform new tasks by learning from experience using low-cost camera systems and deep learning for visual and image recognition.

These more flexible robots can work around the clock, helping make facilities less sensitive to sudden changes in workforce and customer demand and strengthening the supply chain.

Today, e-commerce is roughly 12% of retail sales in the US and is expected to rise well beyond 25% within the decade, fueled by changes in buying habits. However, analysts have begun to consider whether the current crisis might cause permanent jumps in those numbers, as it has in the past (for instance with the SARS epidemic in China in 2003). Whatever happens, the larger supply chain will benefit from greater, more flexible automation, especially during global crises.

We must create what Hamza Mudassire of the University of Cambridge calls a “resilient ecosystem that links multiple buyers with multiple vendors, across a mesh of supply chains.” This ecosystem must be backed by robust, efficient, and scalable automation that uses robotics, autonomous vehicles, and the Internet of Things to help track the flow of goods through the supply chain.

The good news? We can accomplish this with technologies we have today.

Image credit: Guillaume Bolduc / Unsplash Continue reading

Posted in Human Robots

#435765 The Four Converging Technologies Giving ...

How each of us sees the world is about to change dramatically.

For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.

The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.

Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.

Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.

As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.

In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.

A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.

It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)

However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.

Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.

The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.

In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.

In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.

Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.

(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.

Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.

With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.

Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.

And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.

Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.

After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.

And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.

As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”

Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.

Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.

(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.

To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).

In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.

With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.

To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.

For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.

Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.

And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.

Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).

Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.

While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.

(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.

A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.

Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”

Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.

In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.

And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.

On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.

Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.

The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.

Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.

Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.

And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.

As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.

Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.

Share this with your friends, especially if they are interested in any of the areas outlined above.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

This article originally appeared on Diamandis.com

Image Credit: Funky Focus / Pixabay Continue reading

Posted in Human Robots