Tag Archives: evidence
#433907 How the Spatial Web Will Fix What’s ...
Converging exponential technologies will transform media, advertising and the retail world. The world we see, through our digitally-enhanced eyes, will multiply and explode with intelligence, personalization, and brilliance.
This is the age of Web 3.0.
Last week, I discussed the what and how of Web 3.0 (also known as the Spatial Web), walking through its architecture and the converging technologies that enable it.
To recap, while Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens—a flat web of sensorily confined information.
During the next two to five years, the convergence of 5G, AI, a trillion sensors, and VR/AR will enable us to both map our physical world into virtual space and superimpose a digital layer onto our physical environments.
Web 3.0 is about to transform everything—from the way we learn and educate, to the way we trade (smart) assets, to our interactions with real and virtual versions of each other.
And while users grow rightly concerned about data privacy and misuse, the Spatial Web’s use of blockchain in its data and governance layer will secure and validate our online identities, protecting everything from your virtual assets to personal files.
In this second installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for a handful of industries:
News & Media Coverage
Smart Advertising
Personalized Retail
Let’s dive in.
Transforming Network News with Web 3.0
News media is big business. In 2016, global news media (including print) generated 168 billion USD in circulation and advertising revenue.
The news we listen to impacts our mindset. Listen to dystopian news on violence, disaster, and evil, and you’ll more likely be searching for a cave to hide in, rather than technology for the launch of your next business.
Today, different news media present starkly different realities of everything from foreign conflict to domestic policy. And outcomes are consequential. What reporters and news corporations decide to show or omit of a given news story plays a tremendous role in shaping the beliefs and resulting values of entire populations and constituencies.
But what if we could have an objective benchmark for today’s news, whereby crowdsourced and sensor-collected evidence allows you to tour the site of journalistic coverage, determining for yourself the most salient aspects of a story?
Enter mesh networks, AI, public ledgers, and virtual reality.
While traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.
In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.
Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.
Imagine a scenario in which protests break out across the country, each cluster of activists broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram of the march in real time. Want to see and hear what the NYC-based crowds are advocating for? Throw on some VR goggles and explore the event with full access. Or cue into the southern Texan border to assess for yourself the handling of immigrant entry and border conflicts.
Take a front seat in the Capitol during tomorrow’s Senate hearing, assessing each Senator’s reactions, questions and arguments without a Fox News or CNN filter. Or if you’re short on time, switch on the holographic press conference and host 3D avatars of live-broadcasting politicians in your living room.
We often think of modern media as taking away consumer agency, feeding tailored and often partisan ideology to a complacent audience. But as wireless mesh networks and agnostic sensor data allow for immersive VR-accessible news sites, the average viewer will necessarily become an active participant in her own education of current events.
And with each of us interpreting the news according to our own values, I envision a much less polarized world. A world in which civic engagement, moderately reasoned dialogue, and shared assumptions will allow us to empathize and make compromises.
The future promises an era in which news is verified and balanced; wherein public ledgers, AI, and new web interfaces bring you into the action and respect your intelligence—not manipulate your ignorance.
Web 3.0 Reinventing Advertising
Bringing about the rise of ‘user-owned data’ and self-established permissions, Web 3.0 is poised to completely disrupt digital advertising—a global industry worth over 192 billion USD.
Currently, targeted advertising leverages tomes of personal data and online consumer behavior to subtly engage you with products you might not want, or sell you on falsely advertised services promising inaccurate results.
With a new Web 3.0 data and governance layer, however, distributed ledger technologies will require advertisers to engage in more direct interaction with consumers, validating claims and upping transparency.
And with a data layer that allows users to own and authorize third-party use of their data, blockchain also holds extraordinary promise to slash not only data breaches and identity theft, but covert advertiser bombardment without your authorization.
Accessing crowdsourced reviews and AI-driven fact-checking, users will be able to validate advertising claims more efficiently and accurately than ever before, potentially rating and filtering out advertisers in the process. And in such a streamlined system of verified claims, sellers will face increased pressure to compete more on product and rely less on marketing.
But perhaps most exciting is the convergence of artificial intelligence and augmented reality.
As Spatial Web networks begin to associate digital information with physical objects and locations, products will begin to “sell themselves.” Each with built-in smart properties, products will become hyper-personalized, communicating information directly to users through Web 3.0 interfaces.
Imagine stepping into a department store in pursuit of a new web-connected fridge. As soon as you enter, your AR goggles register your location and immediately grant you access to a populated register of store products.
As you move closer to a kitchen set that catches your eye, a virtual salesperson—whether by holographic video or avatar—pops into your field of view next to the fridge you’ve been examining and begins introducing you to its various functions and features. You quickly decide you’d rather disable the avatar and get textual input instead, and preferences are reset to list appliance properties visually.
After a virtual tour of several other fridges, you decide on the one you want and seamlessly execute a smart contract, carried out by your smart wallet and the fridge. The transaction takes place in seconds, and the fridge’s blockchain-recorded ownership record has been updated.
Better yet, you head over to a friend’s home for dinner after moving into the neighborhood. While catching up in the kitchen, your eyes fixate on the cabinets, which quickly populate your AR glasses with a price-point and selection of colors.
But what if you’d rather not get auto-populated product info in the first place? No problem!
Now empowered with self-sovereign identities, users might be able to turn off advertising preferences entirely, turning on smart recommendations only when they want to buy a given product or need new supplies.
And with user-centric data, consumers might even sell such information to advertisers directly. Now, instead of Facebook or Google profiting off your data, you might earn a passive income by giving advertisers permission to personalize and market their services. Buy more, and your personal data marketplace grows in value. Buy less, and a lower-valued advertising profile causes an ebb in advertiser input.
With user-controlled data, advertisers now work on your terms, putting increased pressure on product iteration and personalizing products for each user.
This brings us to the transformative future of retail.
Personalized Retail–Power of the Spatial Web
In a future of smart and hyper-personalized products, I might walk through a virtual game space or a digitally reconstructed Target, browsing specific categories of clothing I’ve predetermined prior to entry.
As I pick out my selection, my AI assistant hones its algorithm reflecting new fashion preferences, and personal shoppers—also visiting the store in VR—help me pair different pieces as I go.
Once my personal shopper has finished constructing various outfits, I then sit back and watch a fashion show of countless Peter avatars with style and color variations of my selection, each customizable.
After I’ve made my selection, I might choose to purchase physical versions of three outfits and virtual versions of two others for my digital avatar. Payments are made automatically as I leave the store, including a smart wallet transaction made with the personal shopper at a per-outfit rate (for only the pieces I buy).
Already, several big players have broken into the VR market. Just this year, Walmart has announced its foray into the VR space, shipping 17,000 Oculus Go VR headsets to Walmart locations across the US.
And just this past January, Walmart filed two VR shopping-related patents. In a new bid to disrupt a rapidly changing retail market, Walmart now describes a system in which users couple their VR headset with haptic gloves for an immersive in-store experience, whether at 3am in your living room or during a lunch break at the office.
But Walmart is not alone. Big e-commerce players from Amazon to Alibaba are leaping onto the scene with new software buildout to ride the impending headset revolution.
Beyond virtual reality, players like IKEA have even begun using mobile-based augmented reality to map digitally replicated furniture in your physical living room, true to dimension. And this is just the beginning….
As AR headset hardware undergoes breakneck advancements in the next two to five years, we might soon be able to project watches onto our wrists, swapping out colors, styles, brand, and price points.
Or let’s say I need a new coffee table in my office. Pulling up multiple models in AR, I can position each option using advanced hand-tracking technology and customize height and width according to my needs. Once the smart payment is triggered, the manufacturer prints my newly-customized piece, droning it to my doorstep. As soon as I need to assemble the pieces, overlaid digital prompts walk me through each step, and any user confusions are communicated to a company database.
Perhaps one of the ripest industries for Spatial Web disruption, retail presents one of the greatest opportunities for profit across virtual apparel, digital malls, AI fashion startups and beyond.
In our next series iteration, I’ll be looking at the tremendous opportunities created by Web 3.0 for the Future of Work and Entertainment.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: nmedia / Shutterstock.com Continue reading
#432249 New Malicious AI Report Outlines Biggest ...
Everyone’s talking about deep fakes: audio-visual imitations of people, generated by increasingly powerful neural networks, that will soon be indistinguishable from the real thing. Politicians are regularly laid low by scandals that arise from audio-visual recordings. Try watching the footage that could be created of Barack Obama from his speeches, and the Lyrebird impersonations. You could easily, today or in the very near future, create a forgery that might be indistinguishable from the real thing. What would that do to politics?
Once the internet is flooded with plausible-seeming tapes and recordings of this sort, how are we going to decide what’s real and what isn’t? Democracy, and our ability to counteract threats, is already threatened by a lack of agreement on the facts. Once you can’t believe the evidence of your senses anymore, we’re in serious trouble. Ultimately, you can dream up all kinds of utterly terrifying possibilities for these deep fakes, from fake news to blackmail.
How to solve the problem? Some have suggested that media websites like Facebook or Twitter should carry software that probes every video to see if it’s a deep fake or not and labels the fakes. But this will prove computationally intensive. Plus, imagine a case where we have such a system, and a fake is “verified as real” by news media algorithms that have been fooled by clever hackers.
The other alternative is even more dystopian: you can prove something isn’t true simply by always having an alibi. Lawfare describes a “solution” where those concerned about deep fakes have all of their movements and interactions recorded. So to avoid being blackmailed or having your reputation ruined, you just consent to some company engaging in 24/7 surveillance of everything you say or do and having total power over that information. What could possibly go wrong?
The point is, in the same way that you don’t need human-level, general AI or humanoid robotics to create systems that can cause disruption in the world of work, you also don’t need a general intelligence to threaten security and wreak havoc on society. Andrew Ng, AI researcher, says that worrying about the risks from superintelligent AI is like “worrying about overpopulation on Mars.” There are clearly risks that arise even from the simple algorithms we have today.
The looming issue of deep fakes is just one of the threats considered by the new malicious AI report, which has co-authors from the Future of Humanity Institute and the Centre for the Study of Existential Risk (among other organizations.) They limit their focus to the technologies of the next five years.
Some of the concerns the report explores are enhancements to familiar threats.
Automated hacking can get better, smarter, and algorithms can adapt to changing security protocols. “Phishing emails,” where people are scammed by impersonating someone they trust or an official organization, could be generated en masse and made more realistic by scraping data from social media. Standard phishing works by sending such a great volume of emails that even a very low success rate can be profitable. Spear phishing aims at specific targets by impersonating family members, but can be labor intensive. If AI algorithms enable every phishing scam to become sharper in this way, more people are going to get gouged.
Then there are novel threats that come from our own increasing use of and dependence on artificial intelligence to make decisions.
These algorithms may be smart in some ways, but as any human knows, computers are utterly lacking in common sense; they can be fooled. A rather scary application is adversarial examples. Machine learning algorithms are often used for image recognition. But it’s possible, if you know a little about how the algorithm is structured, to construct the perfect level of noise to add to an image, and fool the machine. Two images can be almost completely indistinguishable to the human eye. But by adding some cleverly-calculated noise, the hackers can fool the algorithm into thinking an image of a panda is really an image of a gibbon (in the OpenAI example). Research conducted by OpenAI demonstrates that you can fool algorithms even by printing out examples on stickers.
Now imagine that instead of tricking a computer into thinking that a panda is actually a gibbon, you fool it into thinking that a stop sign isn’t there, or that the back of someone’s car is really a nice open stretch of road. In the adversarial example case, the images are almost indistinguishable to humans. By the time anyone notices the road sign has been “hacked,” it could already be too late.
As the OpenAI foundation freely admits, worrying about whether we’d be able to tame a superintelligent AI is a hard problem. It looks all the more difficult when you realize some of our best algorithms can be fooled by stickers; even “modern simple algorithms can behave in ways we do not intend.”
There are ways around this approach.
Adversarial training can generate lots of adversarial examples and explicitly train the algorithm not to be fooled by them—but it’s costly in terms of time and computation, and puts you in an arms race with hackers. Many strategies for defending against adversarial examples haven’t proved adaptive enough; correcting against vulnerabilities one at a time is too slow. Moreover, it demonstrates a point that can be lost in the AI hype: algorithms can be fooled in ways we didn’t anticipate. If we don’t learn about these vulnerabilities until the algorithms are everywhere, serious disruption can occur. And no matter how careful you are, some vulnerabilities are likely to remain to be exploited, even if it takes years to find them.
Just look at the Meltdown and Spectre vulnerabilities, which weren’t widely known about for more than 20 years but could enable hackers to steal personal information. Ultimately, the more blind faith we put into algorithms and computers—without understanding the opaque inner mechanics of how they work—the more vulnerable we will be to these forms of attack. And, as China dreams of using AI to predict crimes and enhance the police force, the potential for unjust arrests can only increase.
This is before you get into the truly nightmarish territory of “killer robots”—not the Terminator, but instead autonomous or consumer drones which could potentially be weaponized by bad actors and used to conduct attacks remotely. Some reports have indicated that terrorist organizations are already trying to do this.
As with any form of technology, new powers for humanity come with new risks. And, as with any form of technology, closing Pandora’s box will prove very difficult.
Somewhere between the excessively hyped prospects of AI that will do everything for us and AI that will destroy the world lies reality: a complex, ever-changing set of risks and rewards. The writers of the malicious AI report note that one of their key motivations is ensuring that the benefits of new technology can be delivered to people as quickly, but as safely, as possible. In the rush to exploit the potential for algorithms and create 21st-century infrastructure, we must ensure we’re not building in new dangers.
Image Credit: lolloj / Shutterstock.com Continue reading