Tag Archives: everywhere

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots

#436005 NASA Hiring Engineers to Develop “Next ...

It’s been nearly six years since NASA unveiled Valkyrie, a state-of-the-art full-size humanoid robot. After the DARPA Robotics Challenge, NASA has continued to work with Valkyrie at Johnson Space Center, and has also provided Valkyrie robots to several different universities. Although it’s not a new platform anymore (six years is a long time in robotics), Valkyrie is still very capable, with plenty of potential for robotics research.

With that in mind, we were caught by surprise when over the last several months, Jacobs, a Dallas-based engineering company that appears to provide a wide variety of technical services to anyone who wants them, has posted several open jobs in need of roboticists in the Houston, Texas, area who are interested in working with NASA on “the next generation of humanoid robot.”

Here are the relevant bullet points from the one of the job descriptions (which you can view at this link):

Work directly with NASA Johnson Space Center in designing the next generation of humanoid robot.

Join the Valkyrie humanoid robot team in NASA’s Robotic Systems Technology Branch.

Build on the success of the existing Valkyrie and Robonaut 2 humanoid robots and advance NASA’s ability to project a remote human presence and dexterous manipulation capability into challenging, dangerous, and distant environments both in space and here on earth.

The question is, why is NASA developing its own humanoid robot (again) when it could instead save a whole bunch of time and money by using a platform that already exists, whether it’s Atlas, Digit, Valkyrie itself, or one of the small handful of other humanoids that are more or less available? The only answer that I can come up with is that no existing platforms meet NASA’s requirements, whatever those may be. And if that’s the case, what kind of requirements are we talking about? The obvious one would be the ability to work in the kinds of environments that NASA specializes in—space, the Moon, and Mars.

Image: NASA

Artist’s concept of NASA’s Valkyrie humanoid robot working on the surface of Mars.

NASA’s existing humanoid robots, including Robonaut 2 and Valkyrie, were designed to operate on Earth. Robonaut 2 ended up going to space anyway (it’s recently returned to Earth for repairs), but its hardware was certainly never intended to function outside of the International Space Station. Working in a vacuum involves designing for a much more rigorous set of environmental challenges, and things get even worse on the Moon or on Mars, where highly abrasive dust gets everywhere.

We know that it’s possible to design robots for long term operation in these kinds of environments because we’ve done it before. But if you’re not actually going to send your robot off-world, there’s very little reason to bother making sure that it can operate through (say) 300° Celsius temperature swings like you’d find on the Moon. In the past, NASA has quite sensibly focused on designing robots that can be used as platforms for the development of software and techniques that could one day be applied to off-world operations, without over-engineering those specific robots to operate in places that they would almost certainly never go. As NASA increasingly focuses on a return to the Moon, though, maybe it’s time to start thinking about a humanoid robot that could actually do useful stuff on the lunar surface.

Image: NASA

Artist’s concept of the Gateway moon-orbiting space station (seen on the right) with an Orion crew vehicle approaching.

The other possibility that I can think of, and perhaps the more likely one, is that this next humanoid robot will be a direct successor to Robonaut 2, intended for NASA’s Gateway space station orbiting the Moon. Some of the robotics folks at NASA that we’ve talked to recently have emphasized how important robotics will be for Gateway:

Trey Smith, NASA Ames: Everybody at NASA is really excited about work on the Gateway space station that would be in near lunar space. We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations. And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.

If you have an un-crewed cargo vehicle that shows up stuffed to the rafters with cargo bags and it docks with the Gateway when there’s no crew there, it would be very useful to have intra-vehicular robots that can pull all those cargo bags out, unpack them, stow all the items, and then even allow the cargo vehicle to detach before the crew show up so that the crew don’t have to waste their time with that.

Julia Badger, NASA JSC: One of the systems on board Gateway is going to be intravehicular robots. They’re not going to necessarily look like Robonaut, but they’ll have some of the same functionality as Robonaut—being mobile, being able to carry payloads from one part of the module to another, doing some dexterous manipulation tasks, inspecting behind panels, those sorts of things.

Image: NASA

Artist’s concept of NASA’s Valkyrie humanoid robot working inside a spacecraft.

Since Gateway won’t be crewed by humans all of the time, it’ll be important to have a permanent robotic presence to keep things running while nobody is home while saving on resources by virtue of the fact that robots aren’t always eating food, drinking water, consuming oxygen, demanding that the temperature stays just so, and producing a variety of disgusting kinds of waste. Obviously, the robot won’t be as capable as humans, but if they can manage to do even basic continuing maintenance tasks (most likely through at least partial teleoperation), that would be very useful.

Photo: Evan Ackerman/IEEE Spectrum

NASA’s Robonaut team plans to perform a variety of mobility and motion-planning experiments using the robot’s new legs, which can grab handrails on the International Space Station.

As for whether robots designed for Gateway would really fall into the “humanoid” category, it’s worth considering that Gateway is designed for humans, implying that an effective robotic system on Gateway would need to be able to interact with the station in similar ways to how a human astronaut would. So, you’d expect to see arms with end-effectors that can grip things as well as push buttons, and some kind of mobility system—the legged version of Robonaut 2 seems like a likely template, but redesigned from the ground up to work in space, incorporating all the advances in robotics hardware and computing that have taken place over the last decade.

We’ve been pestering NASA about this for a little bit now, and they’re not ready to comment on this project, or even to confirm it. And again, everything in this article (besides the job post, which you should totally check out and consider applying for) is just speculation on our part, and we could be wrong about absolutely all of it. As soon as we hear more, we’ll definitely let you know. Continue reading

Posted in Human Robots

#435818 Swappable Flying Batteries Keep Drones ...

Battery power is a limiting factor for robots everywhere, but it’s particularly problematic for drones, which have to make an awkward tradeoff between the amount of battery they carry, the amount of other more useful stuff they carry, and how long they can spend in the air. Consumer drones seem to have settled around about a third of their overall mass in battery, resulting in flight times of 20 to 25 minutes at best, before you have to bring the drone back for a battery swap. And if whatever the drone was supposed to be doing depended on it staying in the air, then you’re pretty much out of luck.

When much larger aircraft have this problem, and in particular military aircraft which sometimes need to stay on-station for long periods of time, the solution is mid-air refueling—why send an aircraft all the way back to its fuel source when you can instead bring the fuel source to the aircraft? It’s easier to do this with liquid fuel than it is with batteries, of course, but researchers at UC Berkeley have come up with a clever solution: You just give the batteries wings. Or, in this case, rotors.

The big quadrotor, which weighs 820 grams, is carrying its own 2.2 Ah lithium-polymer battery that by itself gives it a flight time of about 12 minutes. Each little quadrotor weighs 320 g, including its own 0.8 Ah battery plus a 1.5 Ah battery as cargo. The little ones can’t keep themselves aloft for all that long, but that’s okay, because as flying batteries their only job is to go from ground to the big quadrotor and back again.

Photo: UC Berkeley

The flying batteries land on a tray mounted atop the main drone and align their legs with electrical contacts.

How the flying batteries work
As each flying battery approaches the main quadrotor, the smaller quadrotor takes a position about 30 centimeter above a passive docking tray mounted on top of the bigger drone. It then slowly descends to about 3 cm above, waits for its alignment to be just right, and then drops, landing on the tray which helps align its legs with electrical contacts. As soon as a connection is made, the main quadrotor is able to power itself completely from the smaller drone’s battery payload. Each flying battery can power the main quadrotor for about 6 minutes, and then it flies off and a new flying battery takes its place. If everything goes well, the main quadrotor only uses its primary battery during the undocking and docking phases, and in testing, this boosted its flight time from 12 minutes to nearly an hour.

All of this happens in a motion-capture environment, which is a big constraint, and getting this precision(ish) docking maneuver to work outside, or when the primary drone is moving, is something that the researchers would like to figure out. There are potential applications in situations where continuous monitoring by a drone is important—you could argue that switching off two identical drones might be a simpler way of achieving that, but it also requires two (presumably fancy) drones as opposed to just one plus a bunch of relatively simple and inexpensive flying batteries.

“Flying Batteries: In-flight Battery Switching to Increase Multirotor Flight Time,” by Karan P. Jain and Mark W. Mueller from the High Performance Robotics Lab at UC Berkeley, is available on arXiv. Continue reading

Posted in Human Robots

#435775 Jaco Is a Low-Power Robot Arm That Hooks ...

We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.

Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.

Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.

We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.

IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?

Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.

For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.

Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?

Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.

The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.

The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.

What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?

Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.

Photo: The Nelson Family

Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.

What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?

Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.

The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.

What changes would you like to see in the next generation of Jaco arm?

Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”

Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.

We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!

I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:

To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?

Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.

For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading

Posted in Human Robots

#435691 Squeezing Rocket Fuel From Moon Rocks

Illustration: John MacNeill

Engineers and Architects Are Already Designing Lunar Habitats
Squeezing Rocket Fuel From Moon Rocks
Robots Will Navigate the Moon With Maps They Make Themselves
Kim Stanley Robinson Built a Moon Base in His Mind

The most valuable natural resource on the moon may be water. In addition to sustaining lunar colonists, it could also be broken down into its constituent elements—hydrogen and oxygen—and used to make rocket propellant.

Although the ancients called the dark areas on the moon maria (Latin for “seas”), it has long been clear that liquid water can’t exist on the lunar surface, where it would swiftly evaporate. Since the 1960s, though, scientists have hypothesized that the moon indeed harbors water, in the form of ice. Because the moon has a very small axial tilt—just 1.5 degrees—the floors of many polar craters remain in perpetual darkness. Water could thus condense and survive in such polar “cold traps,” where it might one day be mined.

1/5

Water Water Everywhere: Finding rich deposits of ice and extracting it should be possible but will be technically challenging for lunar settlers. Illustration: John MacNeill

2/5

Mapping the Moon: Several lunar missions have produced strong evidence of water ice. A NASA instrument called the Moon Mineralogy Mapper (M3) found indications of water ice on the permanently shadowed floors of some polar craters. However, the measurements suggest that only a small fraction of cold traps contain ice [colored areas], and that the ice is probably mixed with lunar regolith. Data source.

3/5

Rover-Mounted Drill: The most straightforward strategy for extracting water from polar ice deposits uses a rover-mounted drill. Honeybee Robotics has designed a Planetary Volatiles Extractor with a heated auger, which would cause any water ice in the drilled regolith to vaporize. That vapor would then move through a tube to a condenser unit, where it would turn back into ice. Illustration: John MacNeill

4/5

Thermal Mining: A more ambitious scheme for extracting water from the moon is “thermal mining.” Researchers at the Colorado School of Mines have proposed redirecting the sun’s rays , using heliostats mounted on a crater rim. Water trapped in the regolith would turn into vapor that would be collected in a large tent, then vented into refrigerated cold traps, where it would condense as pure water ice. Illustration: John MacNeill

5/5

Compressed-Gas Transport: To produce rocket fuel from water ice would require an electrolyzer to break the water into hydrogen and oxygen, which would then be compressed and stored for later use. In situ production would also require vehicles to transport the processed fuel to rocket pads. Illustration: John MacNeill

Previous
Next Continue reading

Posted in Human Robots