Tag Archives: everything

#433892 The Spatial Web Will Map Our 3D ...

The boundaries between digital and physical space are disappearing at a breakneck pace. What was once static and boring is becoming dynamic and magical.

For all of human history, looking at the world through our eyes was the same experience for everyone. Beyond the bounds of an over-active imagination, what you see is the same as what I see.

But all of this is about to change. Over the next two to five years, the world around us is about to light up with layer upon layer of rich, fun, meaningful, engaging, and dynamic data. Data you can see and interact with.

This magical future ahead is called the Spatial Web and will transform every aspect of our lives, from retail and advertising, to work and education, to entertainment and social interaction.

Massive change is underway as a result of a series of converging technologies, from 5G global networks and ubiquitous artificial intelligence, to 30+ billion connected devices (known as the IoT), each of which will generate scores of real-world data every second, everywhere.

The current AI explosion will make everything smart, autonomous, and self-programming. Blockchain and cloud-enabled services will support a secure data layer, putting data back in the hands of users and allowing us to build complex rule-based infrastructure in tomorrow’s virtual worlds.

And with the rise of online-merge-offline (OMO) environments, two-dimensional screens will no longer serve as our exclusive portal to the web. Instead, virtual and augmented reality eyewear will allow us to interface with a digitally-mapped world, richly layered with visual data.

Welcome to the Spatial Web. Over the next few months, I’ll be doing a deep dive into the Spatial Web (a.k.a. Web 3.0), covering what it is, how it works, and its vast implications across industries, from real estate and healthcare to entertainment and the future of work. In this blog, I’ll discuss the what, how, and why of Web 3.0—humanity’s first major foray into our virtual-physical hybrid selves (BTW, this year at Abundance360, we’ll be doing a deep dive into the Spatial Web with the leaders of HTC, Magic Leap, and High-Fidelity).

Let’s dive in.

What is the Spatial Web?
While we humans exist in three dimensions, our web today is flat.

The web was designed for shared information, absorbed through a flat screen. But as proliferating sensors, ubiquitous AI, and interconnected networks blur the lines between our physical and online worlds, we need a spatial web to help us digitally map a three-dimensional world.

To put Web 3.0 in context, let’s take a trip down memory lane. In the late 1980s, the newly-birthed world wide web consisted of static web pages and one-way information—a monumental system of publishing and linking information unlike any unified data system before it. To connect, we had to dial up through unstable modems and struggle through insufferably slow connection speeds.

But emerging from this revolutionary (albeit non-interactive) infodump, Web 2.0 has connected the planet more in one decade than empires did in millennia.

Granting democratized participation through newly interactive sites and applications, today’s web era has turbocharged information-sharing and created ripple effects of scientific discovery, economic growth, and technological progress on an unprecedented scale.

We’ve seen the explosion of social networking sites, wikis, and online collaboration platforms. Consumers have become creators; physically isolated users have been handed a global microphone; and entrepreneurs can now access billions of potential customers.

But if Web 2.0 took the world by storm, the Spatial Web emerging today will leave it in the dust.

While there’s no clear consensus about its definition, the Spatial Web refers to a computing environment that exists in three-dimensional space—a twinning of real and virtual realities—enabled via billions of connected devices and accessed through the interfaces of virtual and augmented reality.

In this way, the Spatial Web will enable us to both build a twin of our physical reality in the virtual realm and bring the digital into our real environments.

It’s the next era of web-like technologies:

Spatial computing technologies, like augmented and virtual reality;
Physical computing technologies, like IoT and robotic sensors;
And decentralized computing: both blockchain—which enables greater security and data authentication—and edge computing, which pushes computing power to where it’s most needed, speeding everything up.

Geared with natural language search, data mining, machine learning, and AI recommendation agents, the Spatial Web is a growing expanse of services and information, navigable with the use of ever-more-sophisticated AI assistants and revolutionary new interfaces.

Where Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and social media on two-dimensional screens. But converging technologies are quickly transcending the laptop, and will even disrupt the smartphone in the next decade.

With the rise of wearables, smart glasses, AR / VR interfaces, and the IoT, the Spatial Web will integrate seamlessly into our physical environment, overlaying every conversation, every road, every object, conference room, and classroom with intuitively-presented data and AI-aided interaction.

Think: the Oasis in Ready Player One, where anyone can create digital personas, build and invest in smart assets, do business, complete effortless peer-to-peer transactions, and collect real estate in a virtual world.

Or imagine a virtual replica or “digital twin” of your office, each conference room authenticated on the blockchain, requiring a cryptographic key for entry.

As I’ve discussed with my good friend and “VR guru” Philip Rosedale, I’m absolutely clear that in the not-too-distant future, every physical element of every building in the world is going to be fully digitized, existing as a virtual incarnation or even as N number of these. “Meet me at the top of the Empire State Building?” “Sure, which one?”

This digitization of life means that suddenly every piece of information can become spatial, every environment can be smarter by virtue of AI, and every data point about me and my assets—both virtual and physical—can be reliably stored, secured, enhanced, and monetized.

In essence, the Spatial Web lets us interface with digitally-enhanced versions of our physical environment and build out entirely fictional virtual worlds—capable of running simulations, supporting entire economies, and even birthing new political systems.

But while I’ll get into the weeds of different use cases next week, let’s first concretize.

How Does It Work?
Let’s start with the stack. In the PC days, we had a database accompanied by a program that could ingest that data and present it to us as digestible information on a screen.

Then, in the early days of the web, data migrated to servers. Information was fed through a website, with which you would interface via a browser—whether Mosaic or Mozilla.

And then came the cloud.

Resident at either the edge of the cloud or on your phone, today’s rapidly proliferating apps now allow us to interact with previously read-only data, interfacing through a smartphone. But as Siri and Alexa have brought us verbal interfaces, AI-geared phone cameras can now determine your identity, and sensors are beginning to read our gestures.

And now we’re not only looking at our screens but through them, as the convergence of AI and AR begins to digitally populate our physical worlds.

While Pokémon Go sent millions of mobile game-players on virtual treasure hunts, IKEA is just one of the many companies letting you map virtual furniture within your physical home—simulating everything from cabinets to entire kitchens. No longer the one-sided recipients, we’re beginning to see through sensors, creatively inserting digital content in our everyday environments.

Let’s take a look at how the latest incarnation might work. In this new Web 3.0 stack, my personal AI would act as an intermediary, accessing public or privately-authorized data through the blockchain on my behalf, and then feed it through an interface layer composed of everything from my VR headset, to numerous wearables, to my smart environment (IoT-connected devices or even in-home robots).

But as we attempt to build a smart world with smart infrastructure, smart supply chains and smart everything else, we need a set of basic standards with addresses for people, places, and things. Just like our web today relies on the Internet Protocol (TCP/IP) and other infrastructure, by which your computer is addressed and data packets are transferred, we need infrastructure for the Spatial Web.

And a select group of players is already stepping in to fill this void. Proposing new structural designs for Web 3.0, some are attempting to evolve today’s web model from text-based web pages in 2D to three-dimensional AR and VR web experiences located in both digitally-mapped physical worlds and newly-created virtual ones.

With a spatial programming language analogous to HTML, imagine building a linkable address for any physical or virtual space, granting it a format that then makes it interchangeable and interoperable with all other spaces.

But it doesn’t stop there.

As soon as we populate a virtual room with content, we then need to encode who sees it, who can buy it, who can move it…

And the Spatial Web’s eventual governing system (for posting content on a centralized grid) would allow us to address everything from the room you’re sitting in, to the chair on the other side of the table, to the building across the street.

Just as we have a DNS for the web and the purchasing of web domains, once we give addresses to spaces (akin to granting URLs), we then have the ability to identify and visit addressable locations, physical objects, individuals, or pieces of digital content in cyberspace.

And these not only apply to virtual worlds, but to the real world itself. As new mapping technologies emerge, we can now map rooms, objects, and large-scale environments into virtual space with increasing accuracy.

We might then dictate who gets to move your coffee mug in a virtual conference room, or when a team gets to use the room itself. Rules and permissions would be set in the grid, decentralized governance systems, or in the application layer.

Taken one step further, imagine then monetizing smart spaces and smart assets. If you have booked the virtual conference room, perhaps you’ll let me pay you 0.25 BTC to let me use it instead?

But given the Spatial Web’s enormous technological complexity, what’s allowing it to emerge now?

Why Is It Happening Now?
While countless entrepreneurs have already started harnessing blockchain technologies to build decentralized apps (or dApps), two major developments are allowing today’s birth of Web 3.0:

High-resolution wireless VR/AR headsets are finally catapulting virtual and augmented reality out of a prolonged winter.

The International Data Corporation (IDC) predicts the VR and AR headset market will reach 65.9 million units by 2022. Already in the next 18 months, 2 billion devices will be enabled with AR. And tech giants across the board have long begun investing heavy sums.

In early 2019, HTC is releasing the VIVE Focus, a wireless self-contained VR headset. At the same time, Facebook is charging ahead with its Project Santa Cruz—the Oculus division’s next-generation standalone, wireless VR headset. And Magic Leap has finally rolled out its long-awaited Magic Leap One mixed reality headset.

Mass deployment of 5G will drive 10 to 100-gigabit connection speeds in the next 6 years, matching hardware progress with the needed speed to create virtual worlds.

We’ve already seen tremendous leaps in display technology. But as connectivity speeds converge with accelerating GPUs, we’ll start to experience seamless VR and AR interfaces with ever-expanding virtual worlds.

And with such democratizing speeds, every user will be able to develop in VR.

But accompanying these two catalysts is also an important shift towards the decentralized web and a demand for user-controlled data.

Converging technologies, from immutable ledgers and blockchain to machine learning, are now enabling the more direct, decentralized use of web applications and creation of user content. With no central point of control, middlemen are removed from the equation and anyone can create an address, independently interacting with the network.

Enabled by a permission-less blockchain, any user—regardless of birthplace, gender, ethnicity, wealth, or citizenship—would thus be able to establish digital assets and transfer them seamlessly, granting us a more democratized Internet.

And with data stored on distributed nodes, this also means no single point of failure. One could have multiple backups, accessible only with digital authorization, leaving users immune to any single server failure.

Implications Abound–What’s Next…
With a newly-built stack and an interface built from numerous converging technologies, the Spatial Web will transform every facet of our everyday lives—from the way we organize and access our data, to our social and business interactions, to the way we train employees and educate our children.

We’re about to start spending more time in the virtual world than ever before. Beyond entertainment or gameplay, our livelihoods, work, and even personal decisions are already becoming mediated by a web electrified with AI and newly-emerging interfaces.

In our next blog on the Spatial Web, I’ll do a deep dive into the myriad industry implications of Web 3.0, offering tangible use cases across sectors.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘on ramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Comeback01 / Shutterstock.com Continue reading

Posted in Human Robots

#433884 Designer Babies, and Their Babies: How ...

As if stand-alone technologies weren’t advancing fast enough, we’re in age where we must study the intersection points of these technologies. How is what’s happening in robotics influenced by what’s happening in 3D printing? What could be made possible by applying the latest advances in quantum computing to nanotechnology?

Along these lines, one crucial tech intersection is that of artificial intelligence and genomics. Each field is seeing constant progress, but Jamie Metzl believes it’s their convergence that will really push us into uncharted territory, beyond even what we’ve imagined in science fiction. “There’s going to be this push and pull, this competition between the reality of our biology with its built-in limitations and the scope of our aspirations,” he said.

Metzl is a senior fellow at the Atlantic Council and author of the upcoming book Hacking Darwin: Genetic Engineering and the Future of Humanity. At Singularity University’s Exponential Medicine conference last week, he shared his insights on genomics and AI, and where their convergence could take us.

Life As We Know It
Metzl explained how genomics as a field evolved slowly—and then quickly. In 1953, James Watson and Francis Crick identified the double helix structure of DNA, and realized that the order of the base pairs held a treasure trove of genetic information. There was such a thing as a book of life, and we’d found it.

In 2003, when the Human Genome Project was completed (after 13 years and $2.7 billion), we learned the order of the genome’s 3 billion base pairs, and the location of specific genes on our chromosomes. Not only did a book of life exist, we figured out how to read it.

Jamie Metzl at Exponential Medicine
Fifteen years after that, it’s 2018 and precision gene editing in plants, animals, and humans is changing everything, and quickly pushing us into an entirely new frontier. Forget reading the book of life—we’re now learning how to write it.

“Readable, writable, and hackable, what’s clear is that human beings are recognizing that we are another form of information technology, and just like our IT has entered this exponential curve of discovery, we will have that with ourselves,” Metzl said. “And it’s intersecting with the AI revolution.”

Learning About Life Meets Machine Learning
In 2016, DeepMind’s AlphaGo program outsmarted the world’s top Go player. In 2017 AlphaGo Zero was created: unlike AlphaGo, AlphaGo Zero wasn’t trained using previous human games of Go, but was simply given the rules of Go—and in four days it defeated the AlphaGo program.

Our own biology is, of course, vastly more complex than the game of Go, and that, Metzl said, is our starting point. “The system of our own biology that we are trying to understand is massively, but very importantly not infinitely, complex,” he added.

Getting a standardized set of rules for our biology—and, eventually, maybe even outsmarting our biology—will require genomic data. Lots of it.

Multiple countries already starting to produce this data. The UK’s National Health Service recently announced a plan to sequence the genomes of five million Britons over the next five years. In the US the All of Us Research Program will sequence a million Americans. China is the most aggressive in sequencing its population, with a goal of sequencing half of all newborns by 2020.

“We’re going to get these massive pools of sequenced genomic data,” Metzl said. “The real gold will come from comparing people’s sequenced genomes to their electronic health records, and ultimately their life records.” Getting people comfortable with allowing open access to their data will be another matter; Metzl mentioned that Luna DNA and others have strategies to help people get comfortable with giving consent to their private information. But this is where China’s lack of privacy protection could end up being a significant advantage.

To compare genotypes and phenotypes at scale—first millions, then hundreds of millions, then eventually billions, Metzl said—we’re going to need AI and big data analytic tools, and algorithms far beyond what we have now. These tools will let us move from precision medicine to predictive medicine, knowing precisely when and where different diseases are going to occur and shutting them down before they start.

But, Metzl said, “As we unlock the genetics of ourselves, it’s not going to be about just healthcare. It’s ultimately going to be about who and what we are as humans. It’s going to be about identity.”

Designer Babies, and Their Babies
In Metzl’s mind, the most serious application of our genomic knowledge will be in embryo selection.

Currently, in-vitro fertilization (IVF) procedures can extract around 15 eggs, fertilize them, then do pre-implantation genetic testing; right now what’s knowable is single-gene mutation diseases and simple traits like hair color and eye color. As we get to the millions and then billions of people with sequences, we’ll have information about how these genetics work, and we’re going to be able to make much more informed choices,” Metzl said.

Imagine going to a fertility clinic in 2023. You give a skin graft or a blood sample, and using in-vitro gametogenesis (IVG)—infertility be damned—your skin or blood cells are induced to become eggs or sperm, which are then combined to create embryos. The dozens or hundreds of embryos created from artificial gametes each have a few cells extracted from them, and these cells are sequenced. The sequences will tell you the likelihood of specific traits and disease states were that embryo to be implanted and taken to full term. “With really anything that has a genetic foundation, we’ll be able to predict with increasing levels of accuracy how that potential child will be realized as a human being,” Metzl said.

This, he added, could lead to some wild and frightening possibilities: if you have 1,000 eggs and you pick one based on its optimal genetic sequence, you could then mate your embryo with somebody else who has done the same thing in a different genetic line. “Your five-day-old embryo and their five-day-old embryo could have a child using the same IVG process,” Metzl said. “Then that child could have a child with another five-day-old embryo from another genetic line, and you could go on and on down the line.”

Sounds insane, right? But wait, there’s more: as Jason Pontin reported earlier this year in Wired, “Gene-editing technologies such as Crispr-Cas9 would make it relatively easy to repair, add, or remove genes during the IVG process, eliminating diseases or conferring advantages that would ripple through a child’s genome. This all may sound like science fiction, but to those following the research, the combination of IVG and gene editing appears highly likely, if not inevitable.”

From Crazy to Commonplace?
It’s a slippery slope from gene editing and embryo-mating to a dystopian race to build the most perfect humans possible. If somebody’s investing so much time and energy in selecting their embryo, Metzl asked, how will they think about the mating choices of their children? IVG could quickly leave the realm of healthcare and enter that of evolution.

“We all need to be part of an inclusive, integrated, global dialogue on the future of our species,” Metzl said. “Healthcare professionals are essential nodes in this.” Not least among this dialogue should be the question of access to tech like IVG; are there steps we can take to keep it from becoming a tool for a wealthy minority, and thereby perpetuating inequality and further polarizing societies?

As Pontin points out, at its inception 40 years ago IVF also sparked fear, confusion, and resistance—and now it’s as normal and common as could be, with millions of healthy babies conceived using the technology.

The disruption that genomics, AI, and IVG will bring to reproduction could follow a similar story cycle—if we’re smart about it. As Metzl put it, “This must be regulated, because it is life.”

Image Credit: hywards / Shutterstock.com Continue reading

Posted in Human Robots

#433872 Breaking Out of the Corporate Bubble ...

For big companies, success is a blessing and a curse. You don’t get big without doing something (or many things) very right. It might start with an invention or service the world didn’t know it needed. Your product takes off, and growth brings a whole new set of logistical challenges. Delivering consistent quality, hiring the right team, establishing a strong culture, tapping into new markets, satisfying shareholders. The list goes on.

Eventually, however, what made you successful also makes you resistant to change.

You’ve built a machine for one purpose, and it’s running smoothly, but what about retooling that machine to make something new? Not so easy. Leaders of big companies know there is no future for their organizations without change. And yet, they struggle to drive it.

In their new book, Leading Transformation: How to Take Charge of Your Company’s Future, Kyle Nel, Nathan Furr, and Thomas Ramsøy aim to deliver a roadmap for corporate transformation.

The book focuses on practical tools that have worked in big companies to break down behavioral and cognitive biases, envision radical futures, and run experiments. These include using science fiction and narrative to see ahead and adopting better measures of success for new endeavors.

A thread throughout is how to envision a new future and move into that future.

We’re limited by the bubbles in which we spend the most time—the corporate bubble, the startup bubble, the nonprofit bubble. The mutually beneficial convergence of complementary bubbles, then, can be a powerful tool for kickstarting transformation. The views and experiences of one partner can challenge the accepted wisdom of the other; resources can flow into newly co-created visions and projects; and connections can be made that wouldn’t otherwise exist.

The authors call such alliances uncommon partners. In the following excerpt from the book, Made In Space, a startup building 3D printers for space, helps Lowe’s explore an in-store 3D printing system, and Lowe’s helps Made In Space expand its vision and focus.

Uncommon Partners
In a dingy conference room at NASA, five prototypical nerds, smelling of Thai food, laid out the path to printing satellites in space and buildings on distant planets. At the end of their four-day marathon, they emerged with an artifact trail that began with early prototypes for the first 3D printer on the International Space Station and ended in the additive-manufacturing future—a future much bigger than 3D printing.

In the additive-manufacturing future, we will view everything as transient, or capable of being repurposed into new things. Rather than throwing away a soda bottle or a bent nail, we will simply reprocess these things into a new hinge for the fence we are building or a light switch plate for the tool shed. Indeed, we might not even go buy bricks for the tool shed, but instead might print them from impurities pulled from the air and the dirt beneath our feet. Such a process would both capture carbon in the air to make the bricks and avoid all the carbon involved in making and then transporting traditional bricks to your house.

If it all sounds a little too science fiction, think again. Lowe’s has already been honored as a Champion of Change by the US government for its prototype system to recycle plastic (e.g., plastic bags and bottles). The future may be closer than you have imagined. But to get there, Lowe’s didn’t work alone. It had to work with uncommon partners to create the future.

Uncommon partners are the types of organizations you might not normally work with, but which can greatly help you create radical new futures. Increasingly, as new technologies emerge and old industries converge, companies are finding that working independently to create all the necessary capabilities to enter new industries or create new technologies is costly, risky, and even counterproductive. Instead, organizations are finding that they need to collaborate with uncommon partners as an ecosystem to cocreate the future together. Nathan [Furr] and his colleague at INSEAD, Andrew Shipilov, call this arrangement an adaptive ecosystem strategy and described how companies such as Lowe’s, Samsung, Mastercard, and others are learning to work differently with partners and to work with different kinds of partners to more effectively discover new opportunities. For Lowe’s, an adaptive ecosystem strategy working with uncommon partners forms the foundation of capturing new opportunities and transforming the company. Despite its increased agility, Lowe’s can’t be (and shouldn’t become) an independent additive-manufacturing, robotics-using, exosuit-building, AR-promoting, fill-in-the-blank-what’s-next-ing company in addition to being a home improvement company. Instead, Lowe’s applies an adaptive ecosystem strategy to find the uncommon partners with which it can collaborate in new territory.

To apply the adaptive ecosystem strategy with uncommon partners, start by identifying the technical or operational components required for a particular focus area (e.g., exosuits) and then sort these components into three groups. First, there are the components that are emerging organically without any assistance from the orchestrator—the leader who tries to bring together the adaptive ecosystem. Second, there are the elements that might emerge, with encouragement and support. Third are the elements that won’t happen unless you do something about it. In an adaptive ecosystem strategy, you can create regular partnerships for the first two elements—those already emerging or that might emerge—if needed. But you have to create the elements in the final category (those that won’t emerge) either with an uncommon partner or by yourself.

For example, when Lowe’s wanted to explore the additive-manufacturing space, it began a search for an uncommon partner to provide the missing but needed capabilities. Unfortunately, initial discussions with major 3D printing companies proved disappointing. The major manufacturers kept trying to sell Lowe’s 3D printers. But the vision our group had created with science fiction was not for vendors to sell Lowe’s a printer, but for partners to help the company build a system—something that would allow customers to scan, manipulate, print, and eventually recycle additive-manufacturing objects. Every time we discussed 3D printing systems with these major companies, they responded that they could do it and then tried to sell printers. When Carin Watson, one of the leading lights at Singularity University, introduced us to Made In Space (a company being incubated in Singularity University’s futuristic accelerator), we discovered an uncommon partner that understood what it meant to cocreate a system.

Initially, Made In Space had been focused on simply getting 3D printing to work in space, where you can’t rely on gravity, you can’t send up a technician if the machine breaks, and you can’t release noxious fumes into cramped spacecraft quarters. But after the four days in the conference room going over the comic for additive manufacturing, Made In Space and Lowe’s emerged with a bigger vision. The company helped lay out an artifact trail that included not only the first printer on the International Space Station but also printing system services in Lowe’s stores.

Of course, the vision for an additive-manufacturing future didn’t end there. It also reshaped Made In Space’s trajectory, encouraging the startup, during those four days in a NASA conference room, to design a bolder future. Today, some of its bold projects include the Archinaut, a system that enables satellites to build themselves while in space, a direction that emerged partly from the science fiction narrative we created around additive manufacturing.

In summary, uncommon partners help you succeed by providing you with the capabilities you shouldn’t be building yourself, as well as with fresh insights. You also help uncommon partners succeed by creating new opportunities from which they can prosper.

Helping Uncommon Partners Prosper
Working most effectively with uncommon partners can require a shift from more familiar outsourcing or partnership relationships. When working with uncommon partners, you are trying to cocreate the future, which entails a great deal more uncertainty. Because you can’t specify outcomes precisely, agreements are typically less formal than in other types of relationships, and they operate under the provisions of shared vision and trust more than binding agreement clauses. Moreover, your goal isn’t to extract all the value from the relationship. Rather, you need to find a way to share the value.

Ideally, your uncommon partners should be transformed for the better by the work you do. For example, Lowe’s uncommon partner developing the robotics narrative was a small startup called Fellow Robots. Through their work with Lowe’s, Fellow Robots transformed from a small team focused on a narrow application of robotics (which was arguably the wrong problem) to a growing company developing a very different and valuable set of capabilities: putting cutting-edge technology on top of the old legacy systems embedded at the core of most companies. Working with Lowe’s allowed Fellow Robots to discover new opportunities, and today Fellow Robots works with retailers around the world, including BevMo! and Yamada. Ultimately, working with uncommon partners should be transformative for both of you, so focus more on creating a bigger pie than on how you are going to slice up a smaller pie.

The above excerpt appears in the new book Leading Transformation: How to Take Charge of Your Company’s Future by Kyle Nel, Nathan Furr, and Thomas Ramsøy, published by Harvard Business Review Press.

Image Credit: Here / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#433770 Will Tech Make Insurance Obsolete in the ...

We profit from it, we fear it, and we find it impossibly hard to quantify: risk.

While not the sexiest of industries, insurance can be a life-saving protector, pooling everyone’s premiums to safeguard against some of our greatest, most unexpected losses.

One of the most profitable in the world, the insurance industry exceeded $1.2 trillion in annual revenue since 2011 in the US alone.

But risk is becoming predictable. And insurance is getting disrupted fast.

By 2025, we’ll be living in a trillion-sensor economy. And as we enter a world where everything is measured all the time, we’ll start to transition from protecting against damages to preventing them in the first place.

But what happens to health insurance when Big Brother is always watching? Do rates go up when you sneak a cigarette? Do they go down when you eat your vegetables?

And what happens to auto insurance when most cars are autonomous? Or life insurance when the human lifespan doubles?

For that matter, what happens to insurance brokers when blockchain makes them irrelevant?

In this article, I’ll be discussing four key transformations:

Sensors and AI replacing your traditional broker
Blockchain
The ecosystem approach
IoT and insurance connectivity

Let’s dive in.

AI and the Trillion-Sensor Economy
As sensors continue to proliferate across every context—from smart infrastructure to millions of connected home devices to medicine—smart environments will allow us to ask any question, anytime, anywhere.

And as I often explain, once your AI has access to this treasure trove of ubiquitous sensor data in real time, it will be the quality of your questions that make or break your business.

But perhaps the most exciting insurance application of AI’s convergence with sensors is in healthcare. Tremendous advances in genetic screening are empowering us with predictive knowledge about our long-term health risks.

Leading the charge in genome sequencing, Illumina predicts that in a matter of years, decoding the full human genome will drop to $100, taking merely one hour to complete. Other companies are racing to get you sequences faster and cheaper.

Adopting an ecosystem approach, incumbent insurers and insurtech firms will soon be able to collaborate to provide risk-minimizing services in the health sector. Using sensor data and AI-driven personalized recommendations, insurance partnerships could keep consumers healthy, dramatically reducing the cost of healthcare.

Some fear that information asymmetry will allow consumers to learn of their health risks and leave insurers in the dark. However, both parties could benefit if insurers become part of the screening process.

A remarkable example of this is Gilad Meiri’s company, Neura AI. Aiming to predict health patterns, Neura has developed machine learning algorithms that analyze data from all of a user’s connected devices (sometimes from up to 54 apps!).

Neura predicts a user’s behavior and draws staggering insights about consumers’ health risks. Meiri soon began selling his personal risk assessment tool to insurers, who could then help insured customers mitigate long-term health risks.

But artificial intelligence will impact far more than just health insurance.

In October of 2016, a claim was submitted to Lemonade, the world’s first peer-to-peer insurance company. Rather than being processed by a human, every step in this claim resolution chain—from initial triage through fraud mitigation through final payment—was handled by an AI.

This transaction marks the first time an AI has processed an insurance claim. And it won’t be the last. A traditional human-processed claim takes 40 days to pay out. In Lemonade’s case, payment was transferred within three seconds.

However, Lemonade’s achievement only marks a starting point. Over the course of the next decade, nearly every facet of the insurance industry will undergo a similarly massive transformation.

New business models like peer-to-peer insurance are replacing traditional brokerage relationships, while AI and blockchain pairings significantly reduce the layers of bureaucracy required (with each layer getting a cut) for traditional insurance.

Consider Juniper, a startup that scrapes social media to build your risk assessment, subsequently asking you 12 questions via an iPhone app. Geared with advanced analytics, the platform can generate a million-dollar life insurance policy, approved in less than five minutes.

But what’s keeping all your data from unwanted hands?

Blockchain Building Trust
Current distrust in centralized financial services has led to staggering rates of underinsurance. Add to this fear of poor data and privacy protection, particularly in the wake of 2017’s widespread cybercriminal hacks.

Enabling secure storage and transfer of personal data, blockchain holds remarkable promise against the fraudulent activity that often plagues insurance firms.

The centralized model of insurance companies and other organizations is becoming redundant. Developing blockchain-based solutions for capital markets, Symbiont develops smart contracts to execute payments with little to no human involvement.

But distributed ledger technology (DLT) is enabling far more than just smart contracts.

Also targeting insurance is Tradle, leveraging blockchain for its proclaimed goal of “building a trust provisioning network.” Built around “know-your-customer” (KYC) data, Tradle aims to verify KYC data so that it can be securely forwarded to other firms without any further verification.

By requiring a certain number of parties to reuse pre-verified data, the platform makes your data much less vulnerable to hacking and allows you to keep it on a personal device. Only its verification—let’s say of a transaction or medical exam—is registered in the blockchain.

As insurance data grow increasingly decentralized, key insurance players will experience more and more pressure to adopt an ecosystem approach.

The Ecosystem Approach
Just as exponential technologies converge to provide new services, exponential businesses must combine the strengths of different sectors to expand traditional product lines.

By partnering with platform-based insurtech firms, forward-thinking insurers will no longer serve only as reactive policy-providers, but provide risk-mitigating services as well.

Especially as digital technologies demonetize security services—think autonomous vehicles—insurers must create new value chains and span more product categories.

For instance, France’s multinational AXA recently partnered with Alibaba and Ant Financial Services to sell a varied range of insurance products on Alibaba’s global e-commerce platform at the click of a button.

Building another ecosystem, Alibaba has also collaborated with Ping An Insurance and Tencent to create ZhongAn Online Property and Casualty Insurance—China’s first internet-only insurer, offering over 300 products. Now with a multibillion-dollar valuation, Zhong An has generated about half its business from selling shipping return insurance to Alibaba consumers.

But it doesn’t stop there. Insurers that participate in digital ecosystems can now sell risk-mitigating services that prevent damage before it occurs.

Imagine a corporate manufacturer whose sensors collect data on environmental factors affecting crop yield in an agricultural community. With the backing of investors and advanced risk analytics, such a manufacturer could sell crop insurance to farmers. By implementing an automated, AI-driven UI, they could automatically make payments when sensors detect weather damage to crops.

Now let’s apply this concept to your house, your car, your health insurance.

What’s stopping insurers from partnering with third-party IoT platforms to predict fires, collisions, chronic heart disease—and then empowering the consumer with preventive services?

This brings us to the powerful field of IoT.

Internet of Things and Insurance Connectivity
Leap ahead a few years. With a centralized hub like Echo, your smart home protects itself with a network of sensors. While gone, you’ve left on a gas burner and your internet-connected stove notifies you via a home app.

Better yet, home sensors monitoring heat and humidity levels run this data through an AI, which then remotely controls heating, humidity levels, and other connected devices based on historical data patterns and fire risk factors.

Several firms are already working toward this reality.

AXA plans to one day cooperate with a centralized home hub whereby remote monitoring will collect data for future analysis and detect abnormalities.

With remote monitoring and app-centralized control for users, MonAXA is aimed at customizing insurance bundles. These would reflect exact security features embedded in smart homes.

Wouldn’t you prefer not to have to rely on insurance after a burglary? With digital ecosystems, insurers may soon prevent break-ins from the start.

By gathering sensor data from third parties on neighborhood conditions, historical theft data, suspicious activity and other risk factors, an insurtech firm might automatically put your smart home on high alert, activating alarms and specialized locks in advance of an attack.

Insurance policy premiums are predicted to vastly reduce with lessened likelihood of insured losses. But insurers moving into preventive insurtech will likely turn a profit from other areas of their business. PricewaterhouseCoopers predicts that the connected home market will reach $149 billion USD by 2020.

Let’s look at car insurance.

Car insurance premiums are currently calculated according to the driver and traits of the car. But as more autonomous vehicles take to the roads, not only does liability shift to manufacturers and software engineers, but the risk of collision falls dramatically.

But let’s take this a step further.

In a future of autonomous cars, you will no longer own your car, instead subscribing to Transport as a Service (TaaS) and giving up the purchase of automotive insurance altogether.

This paradigm shift has already begun with Waymo, which automatically provides passengers with insurance every time they step into a Waymo vehicle.

And with the rise of smart traffic systems, sensor-embedded roads, and skyrocketing autonomous vehicle technology, the risks involved in transit only continue to plummet.

Final Thoughts
Insurtech firms are hitting the market fast. IoT, autonomous vehicles and genetic screening are rapidly making us invulnerable to risk. And AI-driven services are quickly pushing conventional insurers out of the market.

By 2024, roll-out of 5G on the ground, as well as OneWeb and Starlink in orbit are bringing 4.2 billion new consumers to the web—most of whom will need insurance. Yet, because of the changes afoot in the industry, none of them will buy policies from a human broker.

While today’s largest insurance companies continue to ignore this fact at their peril (and this segment of the market), thousands of entrepreneurs see it more clearly: as one of the largest opportunities ahead.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: 24Novembers / Shutterstock.com Continue reading

Posted in Human Robots

#433758 DeepMind’s New Research Plan to Make ...

Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.

AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.

That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.

In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.

A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.

Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.

The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.

Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.

Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.

And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.

The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.

The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.

Image Credit: cono0430 / Shutterstock.com Continue reading

Posted in Human Robots