Tag Archives: every

#435605 All of the Winners in the DARPA ...

The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.

First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.

Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.

Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.

DARPA also awarded a bunch of “superlative awards” after SubT:

Most Accurate Artifact: Team Explorer

To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.

Down to the Wire: Team CSIRO Data61

With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.

Most Distinctive Robots: Team Robotika

Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.

Most Robots Per Person: Team Coordinated Robotics

Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.

Fan Favorite: Team NCTU

Photo: Evan Ackerman/IEEE Spectrum

The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.

DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:

The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.

DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#435589 Construction Robots Learn to Excavate by ...

Pavel Savkin remembers the first time he watched a robot imitate his movements. Minutes earlier, the engineer had finished “showing” the robotic excavator its new goal by directing its movements manually. Now, running on software Savkin helped design, the robot was reproducing his movements, gesture for gesture. “It was like there was something alive in there—but I knew it was me,” he said.

Savkin is the CTO of SE4, a robotics software project that styles itself the “driver” of a fleet of robots that will eventually build human colonies in space. For now, SE4 is focused on creating software that can help developers communicate with robots, rather than on building hardware of its own.
The Tokyo-based startup showed off an industrial arm from Universal Robots that was running SE4’s proprietary software at SIGGRAPH in July. SE4’s demonstration at the Los Angeles innovation conference drew the company’s largest audience yet. The robot, nicknamed Squeezie, stacked real blocks as directed by SE4 research engineer Nathan Quinn, who wore a VR headset and used handheld controls to “show” Squeezie what to do.

As Quinn manipulated blocks in a virtual 3D space, the software learned a set of ordered instructions to be carried out in the real world. That order is essential for remote operations, says Quinn. To build remotely, developers need a way to communicate instructions to robotic builders on location. In the age of digital construction and industrial robotics, giving a computer a blueprint for what to build is a well-explored art. But operating on a distant object—especially under conditions that humans haven’t experienced themselves—presents challenges that only real-time communication with operators can solve.

The problem is that, in an unpredictable setting, even simple tasks require not only instruction from an operator, but constant feedback from the changing environment. Five years ago, the Swedish fiber network provider umea.net (part of the private Umeå Energy utility) took advantage of the virtual reality boom to promote its high-speed connections with the help of a viral video titled “Living with Lag: An Oculus Rift Experiment.” The video is still circulated in VR and gaming circles.

In the experiment, volunteers donned headgear that replaced their real-time biological senses of sight and sound with camera and audio feeds of their surroundings—both set at a 3-second delay. Thus equipped, volunteers attempt to complete everyday tasks like playing ping-pong, dancing, cooking, and walking on a beach, with decidedly slapstick results.

At outer-orbit intervals, including SE4’s dream of construction projects on Mars, the limiting factor in communication speed is not an artificial delay, but the laws of physics. The shifting relative positions of Earth and Mars mean that communications between the planets—even at the speed of light—can take anywhere from 3 to 22 minutes.

A long-distance relationship

Imagine trying to manage a construction project from across an ocean without the benefit of intelligent workers: sending a ship to an unknown world with a construction crew and blueprints for a log cabin, and four months later receiving a letter back asking how to cut down a tree. The parallel problem in long-distance construction with robots, according to SE4 CEO Lochlainn Wilson, is that automation relies on predictability. “Every robot in an industrial setting today is expecting a controlled environment.”
Platforms for applying AR and VR systems to teach tasks to artificial intelligences, as SE4 does, are already proliferating in manufacturing, healthcare, and defense. But all of the related communications systems are bound by physics and, specifically, the speed of light.
The same fundamental limitation applies in space. “Our communications are light-based, whether they’re radio or optical,” says Laura Seward Forczyk, a planetary scientist and consultant for space startups. “If you’re going to Mars and you want to communicate with your robot or spacecraft there, you need to have it act semi- or mostly-independently so that it can operate without commands from Earth.”

Semantic control
That’s exactly what SE4 aims to do. By teaching robots to group micro-movements into logical units—like all the steps to building a tower of blocks—the Tokyo-based startup lets robots make simple relational judgments that would allow them to receive a full set of instruction modules at once and carry them out in order. This sidesteps the latency issue in real-time bilateral communications that could hamstring a project or at least make progress excruciatingly slow.
The key to the platform, says Wilson, is the team’s proprietary operating software, “Semantic Control.” Just as in linguistics and philosophy, “semantics” refers to meaning itself, and meaning is the key to a robot’s ability to make even the smallest decisions on its own. “A robot can scan its environment and give [raw data] to us, but it can’t necessarily identify the objects around it and what they mean,” says Wilson.

That’s where human intelligence comes in. As part of the demonstration phase, the human operator of an SE4-controlled machine “annotates” each object in the robot’s vicinity with meaning. By labeling objects in the VR space with useful information—like which objects are building material and which are rocks—the operator helps the robot make sense of its real 3D environment before the building begins.

Giving robots the tools to deal with a changing environment is an important step toward allowing the AI to be truly independent, but it’s only an initial step. “We’re not letting it do absolutely everything,” said Quinn. “Our robot is good at moving an object from point A to point B, but it doesn’t know the overall plan.” Wilson adds that delegating environmental awareness and raw mechanical power to separate agents is the optimal relationship for a mixed human-robot construction team; it “lets humans do what they’re good at, while robots do what they do best.”

This story was updated on 4 September 2019. Continue reading

Posted in Human Robots

#435520 These Are the Meta-Trends Shaping the ...

Life is pretty different now than it was 20 years ago, or even 10 years ago. It’s sort of exciting, and sort of scary. And hold onto your hat, because it’s going to keep changing—even faster than it already has been.

The good news is, maybe there won’t be too many big surprises, because the future will be shaped by trends that have already been set in motion. According to Singularity University co-founder and XPRIZE founder Peter Diamandis, a lot of these trends are unstoppable—but they’re also pretty predictable.

At SU’s Global Summit, taking place this week in San Francisco, Diamandis outlined some of the meta-trends he believes are key to how we’ll live our lives and do business in the (not too distant) future.

Increasing Global Abundance
Resources are becoming more abundant all over the world, and fewer people are seeing their lives limited by scarcity. “It’s hard for us to realize this as we see crisis news, but what people have access to is more abundant than ever before,” Diamandis said. Products and services are becoming cheaper and thus available to more people, and having more resources then enables people to create more, thus producing even more resources—and so on.

Need evidence? The proportion of the world’s population living in extreme poverty is currently lower than it’s ever been. The average human life expectancy is longer than it’s ever been. The costs of day-to-day needs like food, energy, transportation, and communications are on a downward trend.

Take energy. In most of the world, though its costs are decreasing, it’s still a fairly precious commodity; we turn off our lights and our air conditioners when we don’t need them (ideally, both to save money and to avoid wastefulness). But the cost of solar energy has plummeted, and the storage capacity of batteries is improving, and solar technology is steadily getting more efficient. Bids for new solar power plants in the past few years have broken each other’s records for lowest cost per kilowatt hour.

“We’re not far from a penny per kilowatt hour for energy from the sun,” Diamandis said. “And if you’ve got energy, you’ve got water.” Desalination, for one, will be much more widely feasible once the cost of the energy needed for it drops.

Knowledge is perhaps the most crucial resource that’s going from scarce to abundant. All the world’s knowledge is now at the fingertips of anyone who has a mobile phone and an internet connection—and the number of people connected is only going to grow. “Everyone is being connected at gigabit connection speeds, and this will be transformative,” Diamandis said. “We’re heading towards a world where anyone can know anything at any time.”

Increasing Capital Abundance
It’s not just goods, services, and knowledge that are becoming more plentiful. Money is, too—particularly money for business. “There’s more and more capital available to invest in companies,” Diamandis said. As a result, more people are getting the chance to bring their world-changing ideas to life.

Venture capital investments reached a new record of $130 billion in 2018, up from $84 billion in 2017—and that’s just in the US. Globally, VC funding grew 21 percent from 2017 to a total of $207 billion in 2018.

Through crowdfunding, any person in any part of the world can present their idea and ask for funding. That funding can come in the form of a loan, an equity investment, a reward, or an advanced purchase of the proposed product or service. “Crowdfunding means it doesn’t matter where you live, if you have a great idea you can get it funded by people from all over the world,” Diamandis said.

All this is making a difference; the number of unicorns—privately-held startups valued at over $1 billion—currently stands at an astounding 360.

One of the reasons why the world is getting better, Diamandis believes, is because entrepreneurs are trying more crazy ideas—not ideas that are reasonable or predictable or linear, but ideas that seem absurd at first, then eventually end up changing the world.

Everyone and Everything, Connected
As already noted, knowledge is becoming abundant thanks to the proliferation of mobile phones and wireless internet; everyone’s getting connected. In the next decade or sooner, connectivity will reach every person in the world. 5G is being tested and offered for the first time this year, and companies like Google, SpaceX, OneWeb, and Amazon are racing to develop global satellite internet constellations, whether by launching 12,000 satellites, as SpaceX’s Starlink is doing, or by floating giant balloons into the stratosphere like Google’s Project Loon.

“We’re about to reach a period of time in the next four to six years where we’re going from half the world’s people being connected to the whole world being connected,” Diamandis said. “What happens when 4.2 billion new minds come online? They’re all going to want to create, discover, consume, and invent.”

And it doesn’t stop at connecting people. Things are becoming more connected too. “By 2020 there will be over 20 billion connected devices and more than one trillion sensors,” Diamandis said. By 2030, those projections go up to 500 billion and 100 trillion. Think about it: there’s home devices like refrigerators, TVs, dishwashers, digital assistants, and even toasters. There’s city infrastructure, from stoplights to cameras to public transportation like buses or bike sharing. It’s all getting smart and connected.

Soon we’ll be adding autonomous cars to the mix, and an unimaginable glut of data to go with them. Every turn, every stop, every acceleration will be a data point. Some cars already collect over 25 gigabytes of data per hour, Diamandis said, and car data is projected to generate $750 billion of revenue by 2030.

“You’re going to start asking questions that were never askable before, because the data is now there to be mined,” he said.

Increasing Human Intelligence
Indeed, we’ll have data on everything we could possibly want data on. We’ll also soon have what Diamandis calls just-in-time education, where 5G combined with artificial intelligence and augmented reality will allow you to learn something in the moment you need it. “It’s not going and studying, it’s where your AR glasses show you how to do an emergency surgery, or fix something, or program something,” he said.

We’re also at the beginning of massive investments in research working towards connecting our brains to the cloud. “Right now, everything we think, feel, hear, or learn is confined in our synaptic connections,” Diamandis said. What will it look like when that’s no longer the case? Companies like Kernel, Neuralink, Open Water, Facebook, Google, and IBM are all investing billions of dollars into brain-machine interface research.

Increasing Human Longevity
One of the most important problems we’ll use our newfound intelligence to solve is that of our own health and mortality, making 100 years old the new 60—then eventually, 120 or 150.

“Our bodies were never evolved to live past age 30,” Diamandis said. “You’d go into puberty at age 13 and have a baby, and by the time you were 26 your baby was having a baby.”

Seeing how drastically our lifespans have changed over time makes you wonder what aging even is; is it natural, or is it a disease? Many companies are treating it as one, and using technologies like senolytics, CRISPR, and stem cell therapy to try to cure it. Scaffolds of human organs can now be 3D printed then populated with the recipient’s own stem cells so that their bodies won’t reject the transplant. Companies are testing small-molecule pharmaceuticals that can stop various forms of cancer.

“We don’t truly know what’s going on inside our bodies—but we can,” Diamandis said. “We’re going to be able to track our bodies and find disease at stage zero.”

Chins Up
The world is far from perfect—that’s not hard to see. What’s less obvious but just as true is that we’re living in an amazing time. More people are coming together, and they have more access to information, and that information moves faster, than ever before.

“I don’t think any of us understand how fast the world is changing,” Diamandis said. “Most people are fearful about the future. But we should be excited about the tools we now have to solve the world’s problems.”

Image Credit: spainter_vfx / Shutterstock.com Continue reading

Posted in Human Robots

#435423 Moving Beyond Mind-Controlled Limbs to ...

Brain-machine interface enthusiasts often gush about “closing the loop.” It’s for good reason. On the implant level, it means engineering smarter probes that only activate when they detect faulty electrical signals in brain circuits. Elon Musk’s Neuralink—among other players—are readily pursuing these bi-directional implants that both measure and zap the brain.

But to scientists laboring to restore functionality to paralyzed patients or amputees, “closing the loop” has broader connotations. Building smart mind-controlled robotic limbs isn’t enough; the next frontier is restoring sensation in offline body parts. To truly meld biology with machine, the robotic appendage has to “feel one” with the body.

This month, two studies from Science Robotics describe complementary ways forward. In one, scientists from the University of Utah paired a state-of-the-art robotic arm—the DEKA LUKE—with electrically stimulating remaining nerves above the attachment point. Using artificial zaps to mimic the skin’s natural response patterns to touch, the team dramatically increased the patient’s ability to identify objects. Without much training, he could easily discriminate between the small and large and the soft and hard while blindfolded and wearing headphones.

In another, a team based at the National University of Singapore took inspiration from our largest organ, the skin. Mimicking the neural architecture of biological skin, the engineered “electronic skin” not only senses temperature, pressure, and humidity, but continues to function even when scraped or otherwise damaged. Thanks to artificial nerves that transmit signals far faster than our biological ones, the flexible e-skin shoots electrical data 1,000 times quicker than human nerves.

Together, the studies marry neuroscience and robotics. Representing the latest push towards closing the loop, they show that integrating biological sensibilities with robotic efficiency isn’t impossible (super-human touch, anyone?). But more immediately—and more importantly—they’re beacons of hope for patients who hope to regain their sense of touch.

For one of the participants, a late middle-aged man with speckled white hair who lost his forearm 13 years ago, superpowers, cyborgs, or razzle-dazzle brain implants are the last thing on his mind. After a barrage of emotionally-neutral scientific tests, he grasped his wife’s hand and felt her warmth for the first time in over a decade. His face lit up in a blinding smile.

That’s what scientists are working towards.

Biomimetic Feedback
The human skin is a marvelous thing. Not only does it rapidly detect a multitude of sensations—pressure, temperature, itch, pain, humidity—its wiring “binds” disparate signals together into a sensory fingerprint that helps the brain identify what it’s feeling at any moment. Thanks to over 45 miles of nerves that connect the skin, muscles, and brain, you can pick up a half-full coffee cup, knowing that it’s hot and sloshing, while staring at your computer screen. Unfortunately, this complexity is also why restoring sensation is so hard.

The sensory electrode array implanted in the participant’s arm. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019)..
However, complex neural patterns can also be a source of inspiration. Previous cyborg arms are often paired with so-called “standard” sensory algorithms to induce a basic sense of touch in the missing limb. Here, electrodes zap residual nerves with intensities proportional to the contact force: the harder the grip, the stronger the electrical feedback. Although seemingly logical, that’s not how our skin works. Every time the skin touches or leaves an object, its nerves shoot strong bursts of activity to the brain; while in full contact, the signal is much lower. The resulting electrical strength curve resembles a “U.”

The LUKE hand. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019).
The team decided to directly compare standard algorithms with one that better mimics the skin’s natural response. They fitted a volunteer with a robotic LUKE arm and implanted an array of electrodes into his forearm—right above the amputation—to stimulate the remaining nerves. When the team activated different combinations of electrodes, the man reported sensations of vibration, pressure, tapping, or a sort of “tightening” in his missing hand. Some combinations of zaps also made him feel as if he were moving the robotic arm’s joints.

In all, the team was able to carefully map nearly 120 sensations to different locations on the phantom hand, which they then overlapped with contact sensors embedded in the LUKE arm. For example, when the patient touched something with his robotic index finger, the relevant electrodes sent signals that made him feel as if he were brushing something with his own missing index fingertip.

Standard sensory feedback already helped: even with simple electrical stimulation, the man could tell apart size (golf versus lacrosse ball) and texture (foam versus plastic) while blindfolded and wearing noise-canceling headphones. But when the team implemented two types of neuromimetic feedback—electrical zaps that resembled the skin’s natural response—his performance dramatically improved. He was able to identify objects much faster and more accurately under their guidance. Outside the lab, he also found it easier to cook, feed, and dress himself. He could even text on his phone and complete routine chores that were previously too difficult, such as stuffing an insert into a pillowcase, hammering a nail, or eating hard-to-grab foods like eggs and grapes.

The study shows that the brain more readily accepts biologically-inspired electrical patterns, making it a relatively easy—but enormously powerful—upgrade that seamlessly integrates the robotic arms with the host. “The functional and emotional benefits…are likely to be further enhanced with long-term use, and efforts are underway to develop a portable take-home system,” the team said.

E-Skin Revolution: Asynchronous Coded Electronic Skin (ACES)
Flexible electronic skins also aren’t new, but the second team presented an upgrade in both speed and durability while retaining multiplexed sensory capabilities.

Starting from a combination of rubber, plastic, and silicon, the team embedded over 200 sensors onto the e-skin, each capable of discerning contact, pressure, temperature, and humidity. They then looked to the skin’s nervous system for inspiration. Our skin is embedded with a dense array of nerve endings that individually transmit different types of sensations, which are integrated inside hubs called ganglia. Compared to having every single nerve ending directly ping data to the brain, this “gather, process, and transmit” architecture rapidly speeds things up.

The team tapped into this biological architecture. Rather than pairing each sensor with a dedicated receiver, ACES sends all sensory data to a single receiver—an artificial ganglion. This setup lets the e-skin’s wiring work as a whole system, as opposed to individual electrodes. Every sensor transmits its data using a characteristic pulse, which allows it to be uniquely identified by the receiver.

The gains were immediate. First was speed. Normally, sensory data from multiple individual electrodes need to be periodically combined into a map of pressure points. Here, data from thousands of distributed sensors can independently go to a single receiver for further processing, massively increasing efficiency—the new e-skin’s transmission rate is roughly 1,000 times faster than that of human skin.

Second was redundancy. Because data from individual sensors are aggregated, the system still functioned even when any individual receptors are damaged, making it far more resilient than previous attempts. Finally, the setup could easily scale up. Although the team only tested the idea with 240 sensors, theoretically the system should work with up to 10,000.

The team is now exploring ways to combine their invention with other material layers to make it water-resistant and self-repairable. As you might’ve guessed, an immediate application is to give robots something similar to complex touch. A sensory upgrade not only lets robots more easily manipulate tools, doorknobs, and other objects in hectic real-world environments, it could also make it easier for machines to work collaboratively with humans in the future (hey Wall-E, care to pass the salt?).

Dexterous robots aside, the team also envisions engineering better prosthetics. When coated onto cyborg limbs, for example, ACES may give them a better sense of touch that begins to rival the human skin—or perhaps even exceed it.

Regardless, efforts that adapt the functionality of the human nervous system to machines are finally paying off, and more are sure to come. Neuromimetic ideas may very well be the link that finally closes the loop.

Image Credit: Dan Hixson/University of Utah College of Engineering.. Continue reading

Posted in Human Robots

#435199 The Rise of AI Art—and What It Means ...

Artificially intelligent systems are slowly taking over tasks previously done by humans, and many processes involving repetitive, simple movements have already been fully automated. In the meantime, humans continue to be superior when it comes to abstract and creative tasks.

However, it seems like even when it comes to creativity, we’re now being challenged by our own creations.

In the last few years, we’ve seen the emergence of hundreds of “AI artists.” These complex algorithms are creating unique (and sometimes eerie) works of art. They’re generating stunning visuals, profound poetry, transcendent music, and even realistic movie scripts. The works of these AI artists are raising questions about the nature of art and the role of human creativity in future societies.

Here are a few works of art created by non-human entities.

Unsecured Futures
by Ai.Da

Ai-Da Robot with Painting. Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations.
Earlier this month we saw the announcement of Ai.Da, considered the first ultra-realistic drawing robot artist. Her mechanical abilities, combined with AI-based algorithms, allow her to draw, paint, and even sculpt. She is able to draw people using her artificial eye and a pencil in her hand. Ai.Da’s artwork and first solo exhibition, Unsecured Futures, will be showcased at Oxford University in July.

Ai-Da Cartesian Painting. Image Credit: Ai-Da Artworks. Published with permission from Midas Public Relations.
Obviously Ai.Da has no true consciousness, thoughts, or feelings. Despite that, the (human) organizers of the exhibition believe that Ai.Da serves as a basis for crucial conversations about the ethics of emerging technologies. The exhibition will serve as a stimulant for engaging with critical questions about what kind of future we ought to create via such technologies.

The exhibition’s creators wrote, “Humans are confident in their position as the most powerful species on the planet, but how far do we actually want to take this power? To a Brave New World (Nightmare)? And if we use new technologies to enhance the power of the few, we had better start safeguarding the future of the many.”

Google’s PoemPortraits
Our transcendence adorns,
That society of the stars seem to be the secret.

The two lines of poetry above aren’t like any poetry you’ve come across before. They are generated by an algorithm that was trained via deep learning neural networks trained on 20 million words of 19th-century poetry.

Google’s latest art project, named PoemPortraits, takes a word of your suggestion and generates a unique poem (once again, a collaboration of man and machine). You can even add a selfie in the final “PoemPortrait.” Artist Es Devlin, the project’s creator, explains that the AI “doesn’t copy or rework existing phrases, but uses its training material to build a complex statistical model. As a result, the algorithm generates original phrases emulating the style of what it’s been trained on.”

The generated poetry can sometimes be profound, and sometimes completely meaningless.But what makes the PoemPortraits project even more interesting is that it’s a collaborative project. All of the generated lines of poetry are combined to form a consistently growing collective poem, which you can view after your lines are generated. In many ways, the final collective poem is a collaboration of people from around the world working with algorithms.

Faceless Portraits Transcending Time
AICAN + Ahmed Elgammal

Image Credit: AICAN + Ahmed Elgammal | Faceless Portrait #2 (2019) | Artsy.
In March of this year, an AI artist called AICAN and its creator Ahmed Elgammal took over a New York gallery. The exhibition at HG Commentary showed two series of canvas works portraying harrowing, dream-like faceless portraits.

The exhibition was not simply credited to a machine, but rather attributed to the collaboration between a human and machine. Ahmed Elgammal is the founder and director of the Art and Artificial Intelligence Laboratory at Rutgers University. He considers AICAN to not only be an autonomous AI artist, but also a collaborator for artistic endeavors.

How did AICAN create these eerie faceless portraits? The system was presented with 100,000 photos of Western art from over five centuries, allowing it to learn the aesthetics of art via machine learning. It then drew from this historical knowledge and the mandate to create something new to create an artwork without human intervention.

Genesis
by AIVA Technologies

Listen to the score above. While you do, reflect on the fact that it was generated by an AI.

AIVA is an AI that composes soundtrack music for movies, commercials, games, and trailers. Its creative works span a wide range of emotions and moods. The scores it generates are indistinguishable from those created by the most talented human composers.

The AIVA music engine allows users to generate original scores in multiple ways. One is to upload an existing human-generated score and select the temp track to base the composition process on. Another method involves using preset algorithms to compose music in pre-defined styles, including everything from classical to Middle Eastern.

Currently, the platform is promoted as an opportunity for filmmakers and producers. But in the future, perhaps every individual will have personalized music generated for them based on their interests, tastes, and evolving moods. We already have algorithms on streaming websites recommending novel music to us based on our interests and history. Soon, algorithms may be used to generate music and other works of art that are tailored to impact our unique psyches.

The Future of Art: Pushing Our Creative Limitations
These works of art are just a glimpse into the breadth of the creative works being generated by algorithms and machines. Many of us will rightly fear these developments. We have to ask ourselves what our role will be in an era where machines are able to perform what we consider complex, abstract, creative tasks. The implications on the future of work, education, and human societies are profound.

At the same time, some of these works demonstrate that AI artists may not necessarily represent a threat to human artists, but rather an opportunity for us to push our creative boundaries. The most exciting artistic creations involve collaborations between humans and machines.

We have always used our technological scaffolding to push ourselves beyond our biological limitations. We use the telescope to extend our line of sight, planes to fly, and smartphones to connect with others. Our machines are not always working against us, but rather working as an extension of our minds. Similarly, we could use our machines to expand on our creativity and push the boundaries of art.

Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations. Continue reading

Posted in Human Robots