Tag Archives: ever

#437687 Video Friday: Bittle Is a Palm-Sized ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.

Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.

[ Kickstarter ]

Thanks Rz!

I still maintain that Stickybot was one of the most elegantly designed robots ever.

[ Stanford ]

With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.

[ PAL Robotics ]

Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.

Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.

Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.

Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.

[ Energy Robotics ]

Thanks Stefan!

Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.

[ DrGuero ]

World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.

[ Extend Robotics ]

The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:

[ Robocon ]

Sphero has managed to pack an entire Sphero into a much smaller sphere.

[ Sphero ]

Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.

[ Squishy Robotics ]

Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.

[ AU AF ]

Impressive what the Ghost Robotics V60 can do without any vision sensors on it.

[ Ghost Robotics ]

Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.

[ Yumi ]

For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.

[ MIT ]

This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.

[ University of Guleph ]

Australia has one of these now, should the rest of us panic?

[ Boeing ]

Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.

[ Torc Robotics ] Continue reading

Posted in Human Robots

#437624 AI-Powered Drone Learns Extreme ...

Quadrotors are among the most agile and dynamic machines ever created. In the hands of a skilled human pilot, they can do some astonishing series of maneuvers. And while autonomous flying robots have been getting better at flying dynamically in real-world environments, they still haven’t demonstrated the same level of agility of manually piloted ones.

Now researchers from the Robotics and Perception Group at the University of Zurich and ETH Zurich, in collaboration with Intel, have developed a neural network training method that “enables an autonomous quadrotor to fly extreme acrobatic maneuvers with only onboard sensing and computation.” Extreme.

There are two notable things here: First, the quadrotor can do these extreme acrobatics outdoors without any kind of external camera or motion-tracking system to help it out (all sensing and computing is onboard). Second, all of the AI training is done in simulation, without the need for an additional simulation-to-real-world (what researchers call “sim-to-real”) transfer step. Usually, a sim-to-real transfer step means putting your quadrotor into one of those aforementioned external tracking systems, so that it doesn’t completely bork itself while trying to reconcile the differences between the simulated world and the real world, where, as the researchers wrote in a paper describing their system, “even tiny mistakes can result in catastrophic outcomes.”

To enable “zero-shot” sim-to-real transfer, the neural net training in simulation uses an expert controller that knows exactly what’s going on to teach a “student controller” that has much less perfect knowledge. That is, the simulated sensory input that the student ends up using as it learns to follow the expert has been abstracted to present the kind of imperfect, imprecise data it’s going to encounter in the real world. This can involve things like abstracting away the image part of the simulation until you’d have no way of telling the difference between abstracted simulation and abstracted reality, which is what allows the system to make that sim-to-real leap.

The simulation environment that the researchers used was Gazebo, slightly modified to better simulate quadrotor physics. Meanwhile, over in reality, a custom 1.5-kilogram quadrotor with a 4:1 thrust to weight ratio performed the physical experiments, using only a Nvidia Jetson TX2 computing board and an Intel RealSense T265, a dual fisheye camera module optimized for V-SLAM. To challenge the learning system, it was trained to perform three acrobatic maneuvers plus a combo of all of them:

Image: University of Zurich/ETH Zurich/Intel

Reference trajectories for acrobatic maneuvers. Top row, from left: Power Loop, Barrel Roll, and Matty Flip. Bottom row: Combo.

All of these maneuvers require high accelerations of up to 3 g’s and careful control, and the Matty Flip is particularly challenging, at least for humans, because the whole thing is done while the drone is flying backwards. Still, after just a few hours of training in simulation, the drone was totally real-world competent at these tricks, and could even extrapolate a little bit to perform maneuvers that it was not explicitly trained on, like doing multiple loops in a row. Where humans still have the advantage over drones is (as you might expect since we’re talking about robots) is quickly reacting to novel or unexpected situations. And when you’re doing this sort of thing outdoors, novel and unexpected situations are everywhere, from a gust of wind to a jealous bird.

For more details, we spoke with Antonio Loquercio from the University of Zurich’s Robotics and Perception Group.

IEEE Spectrum: Can you explain how the abstraction layer interfaces with the simulated sensors to enable effective sim-to-real transfer?

Antonio Loquercio: The abstraction layer applies a specific function to the raw sensor information. Exactly the same function is applied to the real and simulated sensors. The result of the function, which is “abstracted sensor measurements,” makes simulated and real observation of the same scene similar. For example, suppose we have a sequence of simulated and real images. We can very easily tell apart the real from the simulated ones given the difference in rendering. But if we apply the abstraction function of “feature tracks,” which are point correspondences in time, it becomes very difficult to tell which are the simulated and real feature tracks, since point correspondences are independent of the rendering. This applies for humans as well as for neural networks: Training policies on raw images gives low sim-to-real transfer (since images are too different between domains), while training on the abstracted images has high transfer abilities.

How useful is visual input from a camera like the Intel RealSense T265 for state estimation during such aggressive maneuvers? Would using an event camera substantially improve state estimation?

Our end-to-end controller does not require a state estimation module. It shares however some components with traditional state estimation pipelines, specifically the feature extractor and the inertial measurement unit (IMU) pre-processing and integration function. The input of the neural networks are feature tracks and integrated IMU measurements. When looking at images with low features (for example when the camera points to the sky), the neural net will mainly rely on IMU. When more features are available, the network uses to correct the accumulated drift from IMU. Overall, we noticed that for very short maneuvers IMU measurements were sufficient for the task. However, for longer ones, visual information was necessary to successfully address the IMU drift and complete the maneuver. Indeed, visual information reduces the odds of a crash by up to 30 percent in the longest maneuvers. We definitely think that event camera can improve even more the current approach since they could provide valuable visual information during high speed.

“The Matty Flip is probably one of the maneuvers that our approach can do very well … It is super challenging for humans, since they don’t see where they’re going and have problems in estimating their speed. For our approach the maneuver is no problem at all, since we can estimate forward velocities as well as backward velocities.”
—Antonio Loquercio, University of Zurich

You describe being able to train on “maneuvers that stretch the abilities of even expert human pilots.” What are some examples of acrobatics that your drones might be able to do that most human pilots would not be capable of?

The Matty Flip is probably one of the maneuvers that our approach can do very well, but human pilots find very challenging. It basically entails doing a high speed power loop by always looking backward. It is super challenging for humans, since they don’t see where they’re going and have problems in estimating their speed. For our approach the maneuver is no problem at all, since we can estimate forward velocities as well as backward velocities.

What are the limits to the performance of this system?

At the moment the main limitation is the maneuver duration. We never trained a controller that could perform maneuvers longer than 20 seconds. In the future, we plan to address this limitation and train general controllers which can fly in that agile way for significantly longer with relatively small drift. In this way, we could start being competitive against human pilots in drone racing competitions.

Can you talk about how the techniques developed here could be applied beyond drone acrobatics?

The current approach allows us to do acrobatics and agile flight in free space. We are now working to perform agile flight in cluttered environments, which requires a higher degree of understanding of the surrounding with respect to this project. Drone acrobatics is of course only an example application. We selected it because it makes a stress test of the controller performance. However, several other applications which require fast and agile flight can benefit from our approach. Examples are delivery (we want our Amazon packets always faster, don’t we?), search and rescue, or inspection. Going faster allows us to cover more space in less time, saving battery costs. Indeed, agile flight has very similar battery consumption of slow hovering for an autonomous drone.

“Deep Drone Acrobatics,” by Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza from the Robotics and Perception Group at the University of Zurich and ETH Zurich, and Intel’s Intelligent Systems Lab, was presented at RSS 2020. Continue reading

Posted in Human Robots

#437583 Video Friday: Attack of the Hexapod ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Happy Halloween from HEBI Robotics!

Thanks Hardik!

[ HEBI Robotics ]

Happy Halloween from Berkshire Grey!

[ Berkshire Grey ]

These are some preliminary results of our lab’s new work on using reinforcement learning to train neural networks to imitate common bipedal gait behaviors, without using any motion capture data or reference trajectories. Our method is described in an upcoming submission to ICRA 2021. Work by Jonah Siekmann and Yesh Godse.

[ OSU DRL ]

The northern goshawk is a fast, powerful raptor that flies effortlessly through forests. This bird was the design inspiration for the next-generation drone developed by scientifics of the Laboratory of Intelligent Systems of EPFL led by Dario Floreano. They carefully studied the shape of the bird’s wings and tail and its flight behavior, and used that information to develop a drone with similar characteristics.

The engineers already designed a bird-inspired drone with morphing wing back in 2016. In a step forward, their new model can adjust the shape of its wing and tail thanks to its artificial feathers. Flying this new type of drone isn’t easy, due to the large number of wing and tail configurations possible. To take full advantage of the drone’s flight capabilities, Floreano’s team plans to incorporate artificial intelligence into the drone’s flight system so that it can fly semi-automatically. The team’s research has been published in Science Robotics.

[ EPFL ]

Oopsie.

[ Roborace ]

We’ve covered MIT’s Roboats in the past, but now they’re big enough to keep a couple of people afloat.

Self-driving boats have been able to transport small items for years, but adding human passengers has felt somewhat intangible due to the current size of the vessels. Roboat II is the “half-scale” boat in the growing body of work, and joins the previously developed quarter-scale Roboat, which is 1 meter long. The third installment, which is under construction in Amsterdam and is considered to be “full scale,” is 4 meters long and aims to carry anywhere from four to six passengers.

[ MIT ]

With a training technique commonly used to teach dogs to sit and stay, Johns Hopkins University computer scientists showed a robot how to teach itself several new tricks, including stacking blocks. With the method, the robot, named Spot, was able to learn in days what typically takes a month.

[ JHU ]

Exyn, a pioneer in autonomous aerial robot systems for complex, GPS-denied industrial environments, today announced the first dog, Kody, to successfully fly a drone at Number 9 Coal Mine, in Lansford, PA. Selected to carry out this mission was the new autonomous aerial robot, the ExynAero.

Yes, this is obviously a publicity stunt, and Kody is only flying the drone in the sense that he’s pushing the launch button and then taking a nap. But that’s also the point— drone autonomy doesn’t get much fuller than this, despite the challenge of the environment.

[ Exyn ]

In this video object instance segmentation and shape completion are combined with classical regrasp planning to perform pick-place of novel objects. It is demonstrated with a UR5, Robotiq 85 parallel-jaw gripper, and Structure depth sensor with three rearrangement tasks: bin packing (minimize the height of the packing), placing bottles onto coasters, and arrange blocks from tallest to shortest (according to the longest edge). The system also accounts for uncertainty in the segmentation/completion by avoiding grasping or placing on parts of the object where perceptual uncertainty is predicted to be high.

[ Paper ] via [ Northeastern ]

Thanks Marcus!

U can’t touch this!

[ University of Tokyo ]

We introduce a way to enable more natural interaction between humans and robots through Mixed Reality, by using a shared coordinate system. Azure Spatial Anchors, which already supports colocalizing multiple HoloLens and smartphone devices in the same space, has now been extended to support robots equipped with cameras. This allows humans and robots sharing the same space to interact naturally: humans can see the plan and intention of the robot, while the robot can interpret commands given from the person’s perspective. We hope that this can be a building block in the future of humans and robots being collaborators and coworkers.

[ Microsoft ]

Some very high jumps from the skinniest quadruped ever.

[ ODRI ]

In this video we present recent efforts to make our humanoid robot LOLA ready for multi-contact locomotion, i.e. additional hand-environment support for extra stabilization during walking.

[ TUM ]

Classic bike moves from Dr. Guero.

[ Dr. Guero ]

For a robotics company, iRobot is OLD.

[ iRobot ]

The Canadian Space Agency presents Juno, a preliminary version of a rover that could one day be sent to the Moon or Mars. Juno can navigate autonomously or be operated remotely. The Lunar Exploration Analogue Deployment (LEAD) consisted in replicating scenarios of a lunar sample return mission.

[ CSA ]

How exactly does the Waymo Driver handle a cat cutting across its driving path? Jonathan N., a Product Manager on our Perception team, breaks it all down for us.

Now do kangaroos.

[ Waymo ]

Jibo is hard at work at MIT playing games with kids.

Children’s creativity plummets as they enter elementary school. Social interactions with peers and playful environments have been shown to foster creativity in children. Digital pedagogical tools often lack the creativity benefits of co-located social interaction with peers. In this work, we leverage a social embodied robot as a playful peer and designed Escape!Bot, a game involving child-robot co-play, where the robot is a social agent that scaffolds for creativity during gameplay.

[ Paper ]

It’s nice when convenience stores are convenient even for the folks who have to do the restocking.

Who’s moving the crates around, though?

[ Telexistence ]

Hi, fans ! Join the ROS World 2020, opening November 12th , and see the footage of ROBOTIS’ ROS platform robots 🙂

[ ROS World 2020 ]

ML/RL methods are often viewed as a magical black box, and while that’s not true, learned policies are nonetheless a valuable tool that can work in conjunction with the underlying physics of the robot. In this video, Agility CTO Jonathan Hurst – wearing his professor hat at Oregon State University – presents some recent student work on using learned policies as a control method for highly dynamic legged robots.

[ Agility Robotics ]

Here’s an ICRA Legged Robots workshop talk from Marco Hutter at ETH Zürich, on Autonomy for ANYmal.

Recent advances in legged robots and their locomotion skills has led to systems that are skilled and mature enough for real-world deployment. In particular, quadrupedal robots have reached a level of mobility to navigate complex environments, which enables them to take over inspection or surveillance jobs in place like offshore industrial plants, in underground areas, or on construction sites. In this talk, I will present our research work with the quadruped ANYmal and explain some of the underlying technologies for locomotion control, environment perception, and mission autonomy. I will show how these robots can learn and plan complex maneuvers, how they can navigate through unknown environments, and how they are able to conduct surveillance, inspection, or exploration scenarios.

[ RSL ] Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots

#437466 How Future AI Could Recognize a Kangaroo ...

AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.

For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?

A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.

Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.

It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.

LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?

The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).

“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.

If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.

The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.

To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.

The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.

Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.

While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.

One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.

LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.

Image Credit: pen_ash from Pixabay Continue reading

Posted in Human Robots