Tag Archives: ever
#431159 How Close Is Turing’s Dream of ...
The quest for conversational artificial intelligence has been a long one.
When Alan Turing, the father of modern computing, racked his considerable brains for a test that would truly indicate that a computer program was intelligent, he landed on this area. If a computer could convince a panel of human judges that they were talking to a human—if it could hold a convincing conversation—then it would indicate that artificial intelligence had advanced to the point where it was indistinguishable from human intelligence.
This gauntlet was thrown down in 1950 and, so far, no computer program has managed to pass the Turing test.
There have been some very notable failures, however: Joseph Weizenbaum, as early as 1966—when computers were still programmed with large punch-cards—developed a piece of natural language processing software called ELIZA. ELIZA was a machine intended to respond to human conversation by pretending to be a psychotherapist; you can still talk to her today.
Talking to ELIZA is a little strange. She’ll often rephrase things you’ve said back at you: so, for example, if you say “I’m feeling depressed,” she might say “Did you come to me because you are feeling depressed?” When she’s unsure about what you’ve said, ELIZA will usually respond with “I see,” or perhaps “Tell me more.”
For the first few lines of dialogue, especially if you treat her as your therapist, ELIZA can be convincingly human. This was something Weizenbaum noticed and was slightly alarmed by: people were willing to treat the algorithm as more human than it really was. Before long, even though some of the test subjects knew ELIZA was just a machine, they were opening up with some of their deepest feelings and secrets. They were pouring out their hearts to a machine. When Weizenbaum’s secretary spoke to ELIZA, even though she knew it was a fairly simple computer program, she still insisted Weizenbaum leave the room.
Part of the unexpected reaction ELIZA generated may be because people are more willing to open up to a machine, feeling they won’t be judged, even if the machine is ultimately powerless to do or say anything to really help. The ELIZA effect was named for this computer program: the tendency of humans to anthropomorphize machines, or think of them as human.
Weizenbaum himself, who later became deeply suspicious of the influence of computers and artificial intelligence in human life, was astonished that people were so willing to believe his script was human. He wrote, “I had not realized…that extremely short exposures to a relatively simple computer program could induce powerful delusional thinking in quite normal people.”
“Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.”
The ELIZA effect may have disturbed Weizenbaum, but it has intrigued and fascinated others for decades. Perhaps you’ve noticed it in yourself, when talking to an AI like Siri, Alexa, or Google Assistant—the occasional response can seem almost too real. Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.
Yet the ELIZA effect, as enticing as it is, has proved a source of frustration for people who are trying to create conversational machines. Natural language processing has proceeded in leaps and bounds since the 1960s. Now you can find friendly chatbots like Mitsuku—which has frequently won the Loebner Prize, awarded to the machines that come closest to passing the Turing test—that aim to have a response to everything you might say.
In the commercial sphere, Facebook has opened up its Messenger program and provided software for people and companies to design their own chatbots. The idea is simple: why have an app for, say, ordering pizza when you can just chatter to a robot through your favorite messenger app and make the order in natural language, as if you were telling your friend to get it for you?
Startups like Semantic Machines hope their AI assistant will be able to interact with you just like a secretary or PA would, but with an unparalleled ability to retrieve information from the internet. They may soon be there.
But people who engineer chatbots—both in the social and commercial realm—encounter a common problem: the users, perhaps subconsciously, assume the chatbots are human and become disappointed when they’re not able to have a normal conversation. Frustration with miscommunication can often stem from raised initial expectations.
So far, no machine has really been able to crack the problem of context retention—understanding what’s been said before, referring back to it, and crafting responses based on the point the conversation has reached. Even Mitsuku will often struggle to remember the topic of conversation beyond a few lines of dialogue.
“For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until you end up with vast numbers of potential conversations.”
This is, of course, understandable. Conversation can be almost unimaginably complex. For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until—like possible games of Go or chess—you end up with vast numbers of potential conversations.
But that hasn’t deterred people from trying, most recently, tech giant Amazon, in an effort to make their AI voice assistant, Alexa, friendlier. They have been running the Alexa Prize competition, which offers a cool $500,000 to the winning AI—and a bonus of a million dollars to any team that can create a ‘socialbot’ capable of sustaining a conversation with human users for 20 minutes on a variety of themes.
Topics Alexa likes to chat about include science and technology, politics, sports, and celebrity gossip. The finalists were recently announced: chatbots from universities in Prague, Edinburgh, and Seattle. Finalists were chosen according to the ratings from Alexa users, who could trigger the socialbots into conversation by saying “Hey Alexa, let’s chat,” although the reviews for the socialbots weren’t always complimentary.
By narrowing down the fields of conversation to a specific range of topics, the Alexa Prize has cleverly started to get around the problem of context—just as commercially available chatbots hope to do. It’s much easier to model an interaction that goes a few layers into the conversational topic if you’re limiting those topics to a specific field.
Developing a machine that can hold almost any conversation with a human interlocutor convincingly might be difficult. It might even be a problem that requires artificial general intelligence to truly solve, rather than the previously-employed approaches of scripted answers or neural networks that associate inputs with responses.
But a machine that can have meaningful interactions that people might value and enjoy could be just around the corner. The Alexa Prize winner is announced in November. The ELIZA effect might mean we will relate to machines sooner than we’d thought.
So, go well, little socialbots. If you ever want to discuss the weather or what the world will be like once you guys take over, I’ll be around. Just don’t start a therapy session.
Image Credit: Shutterstock Continue reading
#431134 Anthouse Pet Companion Robot Kickstarter
Press Release by: Anthouse.pet
New Ultimate Pet Companion Robot will Turn Heads and Make Your Dog Absolutely Love You.
Man’s Best Friend will soon have a new companion to play with this Fall. Introducing The Anthouse Pet Companion Robot, from the creators at Anthouse Technology Co., Ltd. The Anthouse Robot is the best pet robot for dogs that the market has ever seen. The product includes a range of smart functions all controlled via a smart phone app that pet owners can control to interact with and attend to their loving pets. Features include a camera that’s capable of recording video and taking photos of your pet, with a one-touch social media share button enabled; a walki-talki megaphone to speak to your pet directly; a dog food treat dispenser that can dispense treat servings depending a measure you select; self-directed automated charging (the robot will find it’s charging station whenever its batteries is nearly depleted); automated obstacle avoidance, and our very favorite, a mini-tennis ball launcher for non-stop fun and exercise for your pet. Never again will you have to wonder what your pet is doing. It’s the perfect user-friendly tech product for pet owners and their faithful friends to keep close despite the physical distance between. The Anthouse Pet Companion Robot is set to launch on Kickstarter on August 15th, 9AM PST with an early-bird pice offering of $349. For media review details, and to get an invitation to the official press kit and pre-launch Kickstarter video viewing, please contact Sarah Miller of the Anthouse team for details.
Photo By: Anthouse.pet
Contact Information:
Name: Sarah Miller
Email: hello@anthouse.pet
Phone: 1 (512) 333-2950
Facebook: @anthousepetrobot
Website:
www.anthouse.pet
On Kickstarter: August 15th, 9AM PST
General Press Kit: http://bit.ly/AnthousePressKit
Photo By: Anthouse.pet
Robotic Magazine’s Note: The press release above was provided by anthouse.pet to us. Robotic Magazine do not necessarily endorse any kickstarter campaigns. We publish relevant kickstarter campaigns at the request of the project owners, for free, to support development of robotics.
The post Anthouse Pet Companion Robot Kickstarter appeared first on Roboticmagazine. Continue reading
#431022 Robots and AI Will Take Over These 3 ...
We’re no stranger to robotics in the medical field. Robot-assisted surgery is becoming more and more common. Many training programs are starting to include robotic and virtual reality scenarios to provide hands-on training for students without putting patients at risk.
With all of these advances in medical robotics, three niches stand out above the rest: surgery, medical imaging, and drug discovery. How have robotics already begun to exert their influence on these practices, and how will they change them for good?
Robot-Assisted Surgery
Robot-assisted surgery was first documented in 1985, when it was used for a neurosurgical biopsy. This led to the use of robotics in a number of similar surgeries, both laparoscopic and traditional operations. The FDA didn’t approve robotic surgery tools until 2000, when the da Vinci Surgery system hit the market.
The robot-assisted surgery market is expected to grow steadily into 2023 and potentially beyond. The only thing that might stand in the way of this growth is the cost of the equipment. The initial investment may prevent small practices from purchasing the necessary devices.
Medical Imaging
The key to successful medical imaging isn’t the equipment itself. It’s being able to interpret the information in the images. Medical images are some of the most information-dense pieces of data in the medical field and can reveal so much more than a basic visual inspection can.
Robotics and, more specifically, artificial intelligence programs like IBM Watson can help interpret these images more efficiently and accurately. By allowing an AI or basic machine learning program to study the medical images, researchers can find patterns and make more accurate diagnoses than ever before.
Drug Discovery
Drug discovery is a long and often tedious process that includes years of testing and assessment. Artificial intelligence, machine learning and predictive algorithms could help speed up this system.
Imagine if researchers could input the kind of medicine they’re trying to make and the kind of symptoms they’re trying to treat into a computer and let it do the rest. With robotics, that may someday be possible.
This isn’t a perfect solution yet—these systems require massive amounts of data before they can start making decisions or predictions. By feeding data into the cloud where these programs can access it, researchers can take the first steps towards setting up a functional database.
Another benefit of these AI programs is that they might see connections humans would never have thought of. People can make those leaps, but the chances are much lower, and it takes much longer if it happens at all. Simply put, we’re not capable of processing the sheer amount of data that computers can process.
This isn’t a field where we’re worrying about robots stealing jobs.
Quite the opposite, in fact—we want robots to become commonly-used tools that can help improve patient care and surgical outcomes.
A human surgeon might have intuition, but they’ll never have the steadiness that a pair of robotic hands can provide or the data-processing capabilities of a machine learning algorithm. If we let them, these tools could change the way we look at medicine.
Image Credit: Intuitive Surgical Continue reading
#430868 These 7 Forces Are Changing the World at ...
It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.
“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading