Tag Archives: ever
#437145 3 Major Materials Science ...
Few recognize the vast implications of materials science.
To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.
That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.
As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.
And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.
Let’s dive in.
The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.
By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.
This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.
Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.
Let’s unpack some of the leading materials science breakthroughs of the past decade.
(1) Lithium-ion batteries
The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.
An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.
But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.
Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.
Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.
(2) Graphene
Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.
Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.
As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.
(3) Perovskite
Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.
Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.
Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.
Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.
Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.
Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.
Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.
And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.
On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.
The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.
Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.
And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.
Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.
Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.
(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2021 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)
This article originally appeared on diamandis.com. Read the original article here.
Image Credit: Anand Kumar from Pixabay Continue reading
#436977 The Top 100 AI Startups Out There Now, ...
New drug therapies for a range of chronic diseases. Defenses against various cyber attacks. Technologies to make cities work smarter. Weather and wildfire forecasts that boost safety and reduce risk. And commercial efforts to monetize so-called deepfakes.
What do all these disparate efforts have in common? They’re some of the solutions that the world’s most promising artificial intelligence startups are pursuing.
Data research firm CB Insights released its much-anticipated fourth annual list of the top 100 AI startups earlier this month. The New York-based company has become one of the go-to sources for emerging technology trends, especially in the startup scene.
About 10 years ago, it developed its own algorithm to assess the health of private companies using publicly-available information and non-traditional signals (think social media sentiment, for example) thanks to more than $1 million in grants from the National Science Foundation.
It uses that algorithm-generated data from what it calls a company’s Mosaic score—pulling together information on market trends, money, and momentum—along with other details ranging from patent activity to the latest news analysis to identify the best of the best.
“Our final list of companies is a mix of startups at various stages of R&D and product commercialization,” said Deepashri Varadharajanis, a lead analyst at CB Insights, during a recent presentation on the most prominent trends among the 2020 AI 100 startups.
About 10 companies on the list are among the world’s most valuable AI startups. For instance, there’s San Francisco-based Faire, which has raised at least $266 million since it was founded just three years ago. The company offers a wholesale marketplace that uses machine learning to match local retailers with goods that are predicted to sell well in their specific location.
Image courtesy of CB Insights
Funding for AI in Healthcare
Another startup valued at more than $1 billion, referred to as a unicorn in venture capital speak, is Butterfly Network, a company on the East Coast that has figured out a way to turn a smartphone phone into an ultrasound machine. Backed by $350 million in private investments, Butterfly Network uses AI to power the platform’s diagnostics. A more modestly funded San Francisco startup called Eko is doing something similar for stethoscopes.
In fact, there are more than a dozen AI healthcare startups on this year’s AI 100 list, representing the most companies of any industry on the list. In total, investors poured about $4 billion into AI healthcare startups last year, according to CB Insights, out of a record $26.6 billion raised by all private AI companies in 2019. Since 2014, more than 4,300 AI startups in 80 countries have raised about $83 billion.
One of the most intensive areas remains drug discovery, where companies unleash algorithms to screen potential drug candidates at an unprecedented speed and breadth that was impossible just a few years ago. It has led to the discovery of a new antibiotic to fight superbugs. There’s even a chance AI could help fight the coronavirus pandemic.
There are several AI drug discovery startups among the AI 100: San Francisco-based Atomwise claims its deep convolutional neural network, AtomNet, screens more than 100 million compounds each day. Cyclica is an AI drug discovery company in Toronto that just announced it would apply its platform to identify and develop novel cannabinoid-inspired drugs for neuropsychiatric conditions such as bipolar disorder and anxiety.
And then there’s OWKIN out of New York City, a startup that uses a type of machine learning called federated learning. Backed by Google, the company’s AI platform helps train algorithms without sharing the necessary patient data required to provide the sort of valuable insights researchers need for designing new drugs or even selecting the right populations for clinical trials.
Keeping Cyber Networks Healthy
Privacy and data security are the focus of a number of AI cybersecurity startups, as hackers attempt to leverage artificial intelligence to launch sophisticated attacks while also trying to fool the AI-powered systems rapidly coming online.
“I think this is an interesting field because it’s a bit of a cat and mouse game,” noted Varadharajanis. “As your cyber defenses get smarter, your cyber attacks get even smarter, and so it’s a constant game of who’s going to match the other in terms of tech capabilities.”
Few AI cybersecurity startups match Silicon Valley-based SentinelOne in terms of private capital. The company has raised more than $400 million, with a valuation of $1.1 billion following a $200 million Series E earlier this year. The company’s platform automates what’s called endpoint security, referring to laptops, phones, and other devices at the “end” of a centralized network.
Fellow AI 100 cybersecurity companies include Blue Hexagon, which protects the “edge” of the network against malware, and Abnormal Security, which stops targeted email attacks, both out of San Francisco. Just down the coast in Los Angeles is Obsidian Security, a startup offering cybersecurity for cloud services.
Deepfakes Get a Friendly Makeover
Deepfakes of videos and other types of AI-manipulated media where faces or voices are synthesized in order to fool viewers or listeners has been a different type of ongoing cybersecurity risk. However, some firms are swapping malicious intent for benign marketing and entertainment purposes.
Now anyone can be a supermodel thanks to Superpersonal, a London-based AI startup that has figured out a way to seamlessly swap a user’s face onto a fashionista modeling the latest threads on the catwalk. The most obvious use case is for shoppers to see how they will look in a particular outfit before taking the plunge on a plunging neckline.
Another British company called Synthesia helps users create videos where a talking head will deliver a customized speech or even talk in a different language. The startup’s claim to fame was releasing a campaign video for the NGO Malaria Must Die showing soccer star David Becham speak in nine different languages.
There’s also a Seattle-based company, Wellsaid Labs, which uses AI to produce voice-over narration where users can choose from a library of digital voices with human pitch, emphasis, and intonation. Because every narrator sounds just a little bit smarter with a British accent.
AI Helps Make Smart Cities Smarter
Speaking of smarter: A handful of AI 100 startups are helping create the smart city of the future, where a digital web of sensors, devices, and cloud-based analytics ensure that nobody is ever stuck in traffic again or without an umbrella at the wrong time. At least that’s the dream.
A couple of them are directly connected to Google subsidiary Sidewalk Labs, which focuses on tech solutions to improve urban design. A company called Replica was spun out just last year. It’s sort of SimCity for urban planning. The San Francisco startup uses location data from mobile phones to understand how people behave and travel throughout a typical day in the city. Those insights can then help city governments, for example, make better decisions about infrastructure development.
Denver-area startup AMP Robotics gets into the nitty gritty details of recycling by training robots on how to recycle trash, since humans have largely failed to do the job. The U.S. Environmental Protection Agency estimates that only about 30 percent of waste is recycled.
Some people might complain that weather forecasters don’t even do that well when trying to predict the weather. An Israeli AI startup, ClimaCell, claims it can forecast rain block by block. While the company taps the usual satellite and ground-based sources to create weather models, it has developed algorithms to analyze how precipitation and other conditions affect signals in cellular networks. By analyzing changes in microwave signals between cellular towers, the platform can predict the type and intensity of the precipitation down to street level.
And those are just some of the highlights of what some of the world’s most promising AI startups are doing.
“You have companies optimizing mining operations, warehouse logistics, insurance, workflows, and even working on bringing AI solutions to designing printed circuit boards,” Varadharajanis said. “So a lot of creative ways in which companies are applying AI to solve different issues in different industries.”
Image Credit: Butterfly Network Continue reading
#436911 Scientists Linked Artificial and ...
Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.
Whoa.
We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.
As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.
This month, an international team put all of those ingredients together, turning theory into reality.
The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.
The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.
That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.
And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.
The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.
The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.
Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.
Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.
Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.
That’s what this study did.
A Hybrid Network
Still with me? Let’s talk network.
It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.
Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).
So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.
To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.
Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.
Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.
You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.
Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.
Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.
It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.
However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.
While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.
“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”
Image Credit: Gerd Altmann from Pixabay Continue reading