Tag Archives: ever
#439608 Atlas Shows Most Impressive Parkour ...
Boston Dynamics has just posted a couple of new videos showing their Atlas humanoid robot doing some of the most impressive parkour we've yet seen. Let's watch!
Parkour is the perfect sandbox for the Atlas team at Boston Dynamics to experiment with new behaviors. In this video our humanoid robots demonstrate their whole-body athletics, maintaining its balance through a variety of rapidly changing, high-energy activities. Through jumps, balance beams, and vaults, we demonstrate how we push Atlas to its limits to discover the next generation of mobility, perception, and athletic intelligence.There are a couple of new and exciting things in this video. First, Atlas is doing some serious work with its upper body by vaulting over that bar. It's not supporting its entire weight with one arm, since it's jumping, but it's doing what looks like some fairly complex balancing and weight management using all four of its limbs at once. Most of what we've seen from Atlas up to this point has been lower body focused, and while the robot has used its arms for forward rolls and stuff, those moves have been simpler than what we're seeing here. Aaron Saunders, Boston Dynamics' VP of Engineering, suggested to us earlier this year that the Atlas team would be working on more upper-body stuff, it looks like they're now delivering. We're expecting that Atlas will continue to improve in this direction, and that at some point it'll be able to do the equivalent of a pull-up, which will open up a much wider variety of behaviors.
The second big new thing is that Atlas is now leveraging perception much more heavily, according to Scott Kuindersma, the Atlas team lead at Boston Dynamics, who wrote about it in a blog post:
“Atlas's moves are driven by perception now, and they weren't back then,” Kuindersma explains. “For example, the previous floor routine and dance videos were about capturing our ability to create a variety of dynamic moves and chain them together into a routine that we could run over and over again. In that case, the robot's control system still has to make lots of critical adjustments on the fly to maintain balance and posture goals, but the robot was not sensing and reacting to its environment.”
In this iteration of parkour, the robot is adapting behaviors in its repertoire based on what it sees. This means the engineers don't need to pre-program jumping motions for all possible platforms and gaps the robot might encounter. Instead, the team creates a smaller number of template behaviors that can be matched to the environment and executed online.This is a pretty big deal. Without perception, Atlas was running its routines blind—as long as the environment was kept more or less completely static, the robot would do okay, but obviously that's a major limitation. What Atlas is doing in this new video is still somewhat limited, in the sense that it's still relying on template behaviors created by humans rather than doing true dynamic planning, but this represents a lot of progress.
One other thing that's worth paying attention to is how Boston Dynamics thinks of humanoid robots:
“Humanoids are interesting from a couple perspectives,” Kuindersma says. “First, they capture our vision of a go-anywhere, do-anything robot of the future. They may not be the best design for any particular task, but if you wanted to build one platform that could perform a wide variety of physical tasks, we already know that a human form factor is capable of doing that.”This tends to be the justification for humanoid robots, along with the idea that you need a humanoid form factor to operate in human environments. But Kuindersma is absolutely right when he says that humanoids may not be the best design for any particular task, and at least in the near term, practical commercial robots tend not to be generalists. Even Boston Dynamic's dog-like robot Spot, with its capable legged mobility, is suited primarily to a narrow range of specific tasks—it's great for situations where legs are necessary, but otherwise it's complex and expensive and wheels often do better. I think it's very important that Boston Dynamics is working towards a go-anywhere, do-anything robot, but it's also important to keep expectations in check, and remember that even robots like Atlas are (I would argue) a decade or more away from this generalist vision.
Meanwhile, Boston Dynamics seems, for better or worse, to be moving away from their habit of surprise posting crazy robot videos with zero explanation. Along with the new parkour video, Boston Dynamics has put together a second behind the scenes video:
Can I just say that I love how absolutely trashed the skins on these robots look? That's how you know good work is getting done.
There's a bunch more detail in this blog post, and we sent Boston Dynamics a couple of questions, too. We'll update this post when we hear back later today. Continue reading
#439062 Xenobots 2.0: These Living Robots ...
The line between animals and machines was already getting blurry after a team of scientists and roboticists unveiled the first living robots last year. Now the same team has released version 2.0 of their so-called xenobots, and they’re faster, stronger, and more capable than ever.
In January 2020, researchers from Tufts University and the University of Vermont laid out a method for building tiny biological machines out of the eggs of the African claw frog Xenopus laevis. Dubbed xenobots after their animal forebear, they could move independently, push objects, and even team up to create swarms.
Remarkably, building them involved no genetic engineering. Instead, the team used an evolutionary algorithm running on a supercomputer to test out thousands of potential designs made up of different configurations of cells.
Once they’d found some promising candidates that could solve the tasks they were interested in, they used microsurgical tools to build real-world versions out of living cells. The most promising design was built by splicing heart muscle cells (which could contract to propel the xenobots), and skin cells (which provided a rigid support).
Impressive as that might sound, having to build each individual xenobot by hand is obviously tedious. But now the team has devised a new approach that works from the bottom up by getting the xenobots to self-assemble their bodies from single cells. Not only is the approach more scalable, the new xenobots are faster, live longer, and even have a rudimentary memory.
In a paper in Science Robotics, the researchers describe how they took stem cells from frog embryos and allowed them to grow into clumps of several thousand cells called spheroids. After a few days, the stem cells had turned into skin cells covered in small hair-like projections called cilia, which wriggle back and forth.
Normally, these structures are used to spread mucus around on the frog’s skin. But when divorced from their normal context they took on a function more similar to that seen in microorganisms, which use cilia to move about by acting like tiny paddles.
“We are witnessing the remarkable plasticity of cellular collectives, which build a rudimentary new ‘body’ that is quite distinct from their default—in this case, a frog—despite having a completely normal genome,” corresponding author Michael Levin from Tufts University said in a press release.
“We see that cells can re-purpose their genetically encoded hardware, like cilia, for new functions such as locomotion. It is amazing that cells can spontaneously take on new roles and create new body plans and behaviors without long periods of evolutionary selection for those features,” he said.
Not only were the new xenobots faster and longer-lived, they were also much better at tasks like working together as a swarm to gather piles of iron oxide particles. And while the form and function of the xenobots was achieved without any genetic engineering, in an extra experiment the team injected them with RNA that caused them to produce a fluorescent protein that changes color when exposed to a particular color of light.
This allowed the xenobots to record whether they had come into contact with a specific light source while traveling about. The researchers say this is a proof of principle that the xenobots can be imbued with a molecular memory, and future work could allow them to record multiple stimuli and potentially even react to them.
What exactly these xenobots could eventually be used for is still speculative, but they have features that make them a promising alternative to non-organic alternatives. For a start, robots made of stem cells are completely biodegradable and also have their own power source in the form of “yolk platelets” found in all amphibian embryos. They are also able to self-heal in as little as five minutes if cut, and can take advantage of cells’ ability to process all kinds of chemicals.
That suggests they could have applications in everything from therapeutics to environmental engineering. But the researchers also hope to use them to better understand the processes that allow individual cells to combine and work together to create a larger organism, and how these processes might be harnessed and guided for regenerative medicine.
As these animal-machine hybrids advance, they are sure to raise ethical concerns and question marks over the potential risks. But it looks like the future of robotics could be a lot more wet and squishy than we imagined.
Image Credit: Doug Blackiston/Tufts University Continue reading
#439040 Ready for duty: Healthcare robots get ...
Not long after the 1918 Spanish flu pandemic, Czech writer Karel Čapek first introduced the term “robot” to describe artificial people in his 1921 sci-fi play R.U.R. While we have not yet created the highly intelligent humanoid robots imagined by Čapek, the robots most commonly used today are complex systems that work alongside humans, assisting with an ever-expanding set of tasks. Continue reading
#439032 To Learn To Deal With Uncertainty, This ...
AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.
But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.
“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”
His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.
“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.
In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.
Gif: MIT Aerospace Controls Laboratory
In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).
Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.
But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.
This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.
“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading
#439012 Video Friday: Man-Machine Synergy ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.
Man-Machine Synergy Effectors, Inc. is a Japanese company working on an absolutely massive “human machine synergistic effect device,” which is a huge robot controlled by a nearby human using a haptic rig.
From the look of things, the next generation will be able to move around. Whoa.
[ MMSE ]
This method of loading and unloading AMRs without having them ever stop moving is so obvious that there must be some equally obvious reason why I've never seen it done in practice.
The LoadRunner is able to transport and sort parcels weighing up to 30 kilograms. This makes it the perfect luggage carrier for airports. These AI-driven go-carts can also work in concert as larger collectives to carry large, heavy and bulky objects. Every LoadRunner can also haul up to four passive trailers. Powered by four electric motors, the LoadRunner sharply brakes at just the right moment right in front of its destination and the payload slides from the robot onto the delivery platform.
[ Fraunhofer ] via [ Gizmodo ]
Ayato Kanada at Kyushu University wrote in to share this clever “dislocatable joint,” a way of combining continuum and rigid robots.
[ Paper ]
Thanks Ayato!
The DodgeDrone challenge revisits the popular dodgeball game in the context of autonomous drones. Specifically, participants will have to code navigation policies to fly drones between waypoints while avoiding dynamic obstacles. Drones are fast but fragile systems: as soon as something hits them, they will crash! Since objects will move towards the drone with different speeds and acceleration, smart algorithms are required to avoid them!
This could totally happen in real life, and we need to be prepared for it!
[ DodgeDrone Challenge ]
In addition to winning the Best Student Design Competition CREATIVITY Award at HRI 2021, this paper would also have won the Best Paper Title award, if that award existed.
[ Paper ]
Robots are traditionally bound by a fixed morphology during their operational lifetime, which is limited to adapting only their control strategies. Here we present the first quadrupedal robot that can morphologically adapt to different environmental conditions in outdoor, unstructured environments.
We show that the robot exploits its training to effectively transition between different morphological configurations, exhibiting substantial performance improvements over a non-adaptive approach. The demonstrated benefits of real-world morphological adaptation demonstrate the potential for a new embodied way of incorporating adaptation into future robotic designs.
[ Nature ]
A drone video shot in a Minneapolis bowling alley was hailed as an instant classic. One Hollywood veteran said it “adds to the language and vocabulary of cinema.” One IEEE Spectrum editor said “hey that's pretty cool.”
[ Bryant Lake Bowl ]
It doesn't take a robot to convince me to buy candy, but I think if I buy candy from Relay it's a business expense, right?
[ RIS ]
DARPA is making progress on its AI dogfighting program, with physical flight tests expected this year.
[ DARPA ACE ]
Unitree Robotics has realized that the Empire needs to be overthrown!
[ Unitree ]
Windhover Labs, an emerging leader in open and reliable flight software and hardware, announces the upcoming availability of its first hardware product, a low cost modular flight computer for commercial drones and small satellites.
[ Windhover ]
As robots and autonomous systems are poised to become part of our everyday lives, the University of Michigan and Ford are opening a one-of-a-kind facility where they’ll develop robots and roboticists that help make lives better, keep people safer and build a more equitable society.
[ U Michigan ]
The adaptive robot Rizon combined with a new hybrid electrostatic and gecko-inspired gripping pad developed by Stanford BDML can manipulate bulky, non-smooth items in the most effort-saving way, which broadens the applications in retail and household environments.
[ Flexiv ]
Thanks Yunfan!
I don't know why anyone would want things to get MORE icy, but if you do for some reason, you can make it happen with a Husky.
Is winter over yet?
[ Clearpath ]
Skip ahead to about 1:20 to see a pair of Gita robots following a Spot following a human like a chain of lil’ robot duckings.
[ PFF ]
Here are a couple of retro robotics videos, one showing teleoperated humanoids from 2000, and the other showing a robotic guide dog from 1976 (!)
[ Tachi Lab ]
Thanks Fan!
If you missed Chad Jenkins' talk “That Ain’t Right: AI Mistakes and Black Lives” last time, here's another opportunity to watch from Robotics Today, and it includes a top notch panel discussion at the end.
[ Robotics Today ]
Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over numerous R&D programs that I have led at NREC in the past 25 years.
[ CMU ] Continue reading