Tag Archives: enterprise

#438294 Video Friday: New Entertainment Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Engineered Arts' latest Mesmer entertainment robot is Cleo. It sings, gesticulates, and even does impressions.

[ Engineered Arts ]

I do not know what this thing is or what it's saying but Panasonic is going to be selling them and I will pay WHATEVER. IT. COSTS.

Slightly worrisome is that Google Translate persistently thinks that part of the description involves “sleeping and flatulence.”

[ Panasonic ] via [ RobotStart ]

Spot Enterprise is here to help you safely ignore every alarm that goes off at work while you're snug at home in your jammies drinking cocoa.

That Spot needs a bath.

If you missed the launch event (with more on the arm), check it out here:

[ Boston Dynamics ]

PHASA-35, a 35m wingspan solar-electric aircraft successfully completed its maiden flight in Australia, February 2020. Designed to operate unmanned in the stratosphere, above the weather and conventional air traffic, PHASA-35 offers a persistent and affordable alternative to satellites combined with the flexibility of an aircraft, which could be used for a range of valuable applications including forest fire detection and maritime surveillance.

[ BAE Systems ]

As part of the Army Research Lab’s (ARL) Robotics Collaborative Technology Alliance (RCTA), we are developing new planning and control algorithms for quadrupedal robots. The goal of our project is to equip the robot LLAMA, developed by NASA JPL, with the skills it needs to move at operational tempo over difficult terrain to keep up with a human squad. This requires innovative perception, planning, and control techniques to make the robot both precise in execution for navigating technical obstacles and robust enough to reject disturbances and recover from unknown errors.

[ IHMC ]

Watch what happens to this drone when it tries to install a bird diverter on a high voltage power line:

[ GRVC ]

Soldiers navigate a wide variety of terrains to successfully complete their missions. As human/agent teaming and artificial intelligence advance, the same flexibility will be required of robots to maneuver across diverse terrain and become effective combat teammates.

[ Army ]

The goal of the GRIFFIN project is to create something similar to sort of robotic bird, which almost certainly won't look like this concept rendering.

While I think this research is great, at what point is it in fact easier to just, you know, train an actual bird?

[ GRIFFIN ]

Paul Newman narrates this video from two decades ago, which is a pretty neat trick.

[ Oxford Robotics Institute ]

The first step towards a LEGO-based robotic McMuffin creator is cracking and separating eggs.

[ Astonishing Studios ] via [ BB ]

Some interesting soft robotics projects at the University of Southern Denmark.

[ SDU ]

Chong Liu introduces Creature_02, his final presentation for Hod Lipson's Robotics Studio course at Columbia.

[ Chong Liu ]

The world needs more robot blimps.

[ Lab INIT Robots ]

Finishing its duty early, the KR CYBERTECH nano uses this time to play basketball.

[ Kuka ]

senseFly has a new aerial surveying drone that they call “affordable,” although they don't say what the price is.

[ senseFly ]

In summer 2020 participated several science teams of the ETH Zurich at the “Art Safiental” in the mountains of Graubunden. After the scientists packed their hiking gear and their robots, their only mission was “over hill and dale to the summit”. How difficult will it be to reach the summit with a legged robot and an exosceletton? What's the relation of synesthetic dance and robotic? How will the hikers react to these projects?

[ Rienerschnitzel Films ]

Thanks Robert!

Karen Liu: How robots perceive the physical world. A specialist in computer animation expounds upon her rapidly evolving specialty, known as physics-based simulation, and how it is helping robots become more physically aware of the world around them.

[ Stanford ]

This week's UPenn GRASP On Robotics seminar is by Maria Chiara Carrozza from Scuola Superiore Sant’Anna, on “Biorobotics for Personal Assistance – Translational Research and Opportunities for Human-Centered Developments.”

The seminar will focus on the opportunities and challenges offered by the digital transformation of healthcare which was accelerated in the COVID-19 Pandemia. In this framework rehabilitation and social robotics can play a fundamental role as enabling technologies for providing innovative therapies and services to patients even at home or in remote environments.

[ UPenn ] Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots

#437918 Video Friday: These Robots Wish You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICCR 2020 – December 26-29, 2020 – [Online]
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Look who’s baaaack: Jibo! After being sold (twice?), this pioneering social home robot (it was first announced back in 2014!) now belongs to NTT Disruption, which was described to us as the “disruptive company of NTT Group.” We are all for disruption, so this looks like a great new home for Jibo.

[ NTT Disruption ]

Thanks Ana!

FZI's Christmas Party was a bit of a challenge this year; good thing robots are totally competent to have a part on their own.

[ FZI ]

Thanks Arne!

Do you have a lonely dog that just wants a friend to watch cat videos on YouTube with? The Danish Technological Institute has a gift idea for you.

[ DTI ]

Thanks Samuel!

Once upon a time, not so far away, there was an elf who received a very special gift. Watch this heartwarming story. Happy Holidays from the Robotiq family to yours!

Of course, these elves are not now unemployed, they've instead moved over to toy design full time!

[ Robotiq ]

An elegant Christmas video from the Dynamics System Lab, make sure and watch through the very end for a little extra cheer.

[ Dynamic Systems Lab ]

Thanks Angela!

Usually I complain when robotics companies make holiday videos without any real robots in them, but this is pretty darn cute from Yaskawa this year.

[ Yaskawa ]

Here's our little christmas gift to the fans of strange dynamic behavior. The gyro will follow any given shape as soon as the tip touches its edge and the rotation is fast enough. The friction between tip and shape generates a tangential force, creating a moment such that the gyroscopic reaction pushes the tip towards the shape. The resulting normal force produces a moment that guides the tip along the shape's edge.

[ TUM ]

Happy Holidays from Fanuc!

Okay but why does there have to be an assembly line elf just to put in those little cranks?

[ Fanuc ]

Astrobotic's cute little CubeRover is at NASA busy not getting stuck in places.

[ Astrobotic ]

Team CoSTAR is sharing more of their work on subterranean robotic exploration.

[ CoSTAR ]

Skydio Autonomy Enterprise Foundation (AEF), a new software product that delivers advanced AI-powered capabilities to assist the pilot during tactical situational awareness scenarios and detailed industrial asset inspections. Designed for professionals, it offers an enterprise-caliber flight experience through the new Skydio Enterprise application.

[ Skydio ]

GITAI's S1 autonomous robot will conduct two experiments: IVA (Intra-Vehicular Activity) tasks such as switch and cable operations, and assembly of structures and panels to demonstrate its capability for ISA (In-Space Assembly) tasks. This video was recorded in the Nanoracks Bishop Airlock mock-up facility @GITAI Tokyo office.

[ GITAI ]

It's no Atlas, but this is some impressive dynamic balancing from iCub.

[ IIT ]

The Campaign to Stop Killer Robots and I don't agree on a lot of things, and I don't agree with a lot of the assumptions made in this video, either. But, here you go!

[ CSKR ]

I don't know much about this robot, but I love it.

[ Columbia ]

Most cable-suspended robots have a very well defined workspace, but you can increase that workspace by swinging them around. Wheee!

[ Laval ]

How you know your robot's got some skill: “to evaluate the performance in climbing over the step, we compared the R.L. result to the results of 12 students who attempted to find the best planning. The RL outperformed all the group, in terms of effort and time, both in continuous (joystick) and partition planning.”

[ Zarrouk Lab ]

In the Spring 2021 semester, mechanical engineering students taking MIT class 2.007, Design and Manufacturing I, will be able to participate in the class’ iconic final robot competition from the comfort of their own home. Whether they take the class virtually or semi-virtually, students will be sent a massive kit of tools and materials to build their own unique robot along with a “Home Alone” inspired game board for the final global competition.

[ MIT ]

Well, this thing is still around!

[ Moley Robotics ]

Manuel Ahumada wrote in to share this robotic Baby Yoda that he put together with a little bit of help from Intel's OpenBot software.

[ YouTube ]

Thanks Manuel!

Here's what Zoox has been working on for the past half-decade.

[ Zoox ] Continue reading

Posted in Human Robots

#437884 Hyundai Buys Boston Dynamics for Nearly ...

This morning just after 3 a.m. ET, Boston Dynamics sent out a media release confirming that Hyundai Motor Group has acquired a controlling interest in the company that values Boston Dynamics at US $1.1 billion:

Under the agreement, Hyundai Motor Group will hold an approximately 80 percent stake in Boston Dynamics and SoftBank, through one of its affiliates, will retain an approximately 20 percent stake in Boston Dynamics after the closing of the transaction.

The release is very long, but does have some interesting bits—we’ll go through them, and talk about what this might mean for both Boston Dynamics and Hyundai.

We’ve asked Boston Dynamics for comment, but they’ve been unusually quiet for the last few days (I wonder why!). So at this point just keep in mind that the only things we know for sure are the ones in the release. If (when?) we hear anything from either Boston Dynamics or Hyundai, we’ll update this post.

The first thing to be clear on is that the acquisition is split between Hyundai Motor Group’s affiliates, including Hyundai Motor, Hyundai Mobis, and Hyundai Glovis. Hyundai Motor makes cars, Hyundai Mobis makes car parts and seems to be doing some autonomous stuff as well, and Hyundai Glovis does logistics. There are many other groups that share the Hyundai name, but they’re separate entities, at least on paper. For example, there’s a Hyundai Robotics, but that’s part of Hyundai Heavy Industries, a different company than Hyundai Motor Group. But for this article, when we say “Hyundai,” we’re talking about Hyundai Motor Group.

What’s in it for Hyundai?
Let’s get into the press release, which is filled with press release-y terms like “synergies” and “working together”—you can view the whole thing here—but still has some parts that convey useful info.

By establishing a leading presence in the field of robotics, the acquisition will mark another major step for Hyundai Motor Group toward its strategic transformation into a Smart Mobility Solution Provider. To propel this transformation, Hyundai Motor Group has invested substantially in development of future technologies, including in fields such as autonomous driving technology, connectivity, eco-friendly vehicles, smart factories, advanced materials, artificial intelligence (AI), and robots.

If Hyundai wants to be a “Smart Mobility Solution Provider” with a focus on vehicles, it really seems like there’s a whole bunch of other ways they could have spent most of a billion dollars that would get them there quicker. Will Boston Dynamics’ expertise help them develop autonomous driving technology? Sure, I guess, but why not just buy an autonomous car startup instead? Boston Dynamics is more about “robots,” which happens to be dead last on the list above.

There was some speculation a couple of weeks ago that Hyundai was going to try and leverage Boston Dynamics to make a real version of this hybrid wheeled/legged concept car, so if that’s what Hyundai means by “Smart Mobility Solution Provider,” then I suppose the Boston Dynamics acquisition makes more sense. Still, I think that’s unlikely, because it’s just a concept car, after all.

In addition to “smart mobility,” which seems like a longer-term goal for Hyundai, the company also mentions other, more immediate benefits from the acquisition:

Advanced robotics offer opportunities for rapid growth with the potential to positively impact society in multiple ways. Boston Dynamics is the established leader in developing agile, mobile robots that have been successfully integrated into various business operations. The deal is also expected to allow Hyundai Motor Group and Boston Dynamics to leverage each other’s respective strengths in manufacturing, logistics, construction and automation.

“Successfully integrated” might be a little optimistic here. They’re talking about Spot, of course, but I think the best you could say at this point is that Spot is in the middle of some promising pilot projects. Whether it’ll be successfully integrated in the sense that it’ll have long-term commercial usefulness and value remains to be seen. I’m optimistic about this as well, but Spot is definitely not there yet.

What does probably hold a lot of value for Hyundai is getting Spot, Pick, and perhaps even Handle into that “manufacturing, logistics, construction” stuff. This is the bread and butter for robots right now, and Boston Dynamics has plenty of valuable technology to offer in those spaces.

Photo: Bob O’Connor

Boston Dynamics is selling Spot for $74,500, shipping included.

Betting on Spot and Pick
With Boston Dynamics founder Marc Raibert’s transition to Chairman of the company, the CEO position is now occupied by Robert Playter, the long-time VP of engineering and more recently COO at Boston Dynamics. Here’s his statement from the release:

“Boston Dynamics’ commercial business has grown rapidly as we’ve brought to market the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility. We and Hyundai share a view of the transformational power of mobility and look forward to working together to accelerate our plans to enable the world with cutting edge automation, and to continue to solve the world’s hardest robotics challenges for our customers.”

Whether Spot is in fact “the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility” on the market is perhaps something that could be argued against, although I won’t. Whether or not it was the first robot that can do these kinds of things, it’s definitely not the only robot that do these kinds of things, and going forward, it’s going to be increasingly challenging for Spot to maintain its uniqueness.

For a long time, Boston Dynamics totally owned the quadruped space. Now, they’re one company among many—ANYbotics and Unitree are just two examples of other quadrupeds that are being successfully commercialized. Spot is certainly very capable and easy to use, and we shouldn’t underestimate the effort required to create a robot as complex as Spot that can be commercially used and supported. But it’s not clear how long they’ll maintain that advantage, with much more affordable platforms coming out of Asia, and other companies offering some unique new capabilities.

Photo: Boston Dynamics

Boston Dynamics’ Handle is an all-electric robot featuring a leg-wheel hybrid mobility system, a manipulator arm with a vacuum gripper, and a counterbalancing tail.

Boston Dynamics’ picking system, which stemmed from their 2019 acquisition of Kinema Systems, faces the same kinds of challenges—it’s very good, but it’s not totally unique.

Boston Dynamics produces highly capable mobile robots with advanced mobility, dexterity and intelligence, enabling automation in difficult, dangerous, or unstructured environments. The company launched sales of its first commercial robot, Spot in June of 2020 and has since sold hundreds of robots in a variety of industries, such as power utilities, construction, manufacturing, oil and gas, and mining. Boston Dynamics plans to expand the Spot product line early next year with an enterprise version of the robot with greater levels of autonomy and remote inspection capabilities, and the release of a robotic arm, which will be a breakthrough in mobile manipulation.

Boston Dynamics is also entering the logistics automation market with the industry leading Pick, a computer vision-based depalletizing solution, and will introduce a mobile robot for warehouses in 2021.

Huh. We’ll be trying to figure out what “greater levels of autonomy” means, as well as whether the “mobile robot for warehouses” is Handle, or something more like an autonomous mobile robot (AMR) platform. I’d honestly be surprised if Handle was ready for work outside of Boston Dynamics next year, and it’s hard to imagine how Boston Dynamics could leverage their expertise into the AMR space with something that wouldn’t just seem… Dull, compared to what they usually do. I hope to be surprised, though!

A new deep-pocketed benefactor

Hyundai Motor Group’s decision to acquire Boston Dynamics is based on its growth potential and wide range of capabilities.

“Wide range of capabilities” we get, but that other phrase, “growth potential,” has a heck of a lot wrapped up in it. At the moment, Boston Dynamics is nowhere near profitable, as far as we know. SoftBank acquired Boston Dynamics in 2017 for between one hundred and two hundred million, and over the last three years they’ve poured hundreds of millions more into Boston Dynamics.

Hyundai’s 80 percent stake just means that they’ll need to take over the majority of that support, and perhaps even increase it if Boston Dynamics’ growth is one of their primary goals. Hyundai can’t have a reasonable expectation that Boston Dynamics will be profitable any time soon; they’re selling Spots now, but it’s an open question whether Spot will manage to find a scalable niche in which it’ll be useful in the sort of volume that will make it a sustainable commercial success. And even if it does become a success, it seems unlikely that Spot by itself will make a significant dent in Boston Dynamics’ burn rate anytime soon. Boston Dynamics will have more products of course, but it’s going to take a while, and Hyundai will need to support them in the interim.

Depending on whether Hyundai views Boston Dynamics as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the
next Atlas, when the
current one still seems so far from commercialization

It’s become clear that to sustain itself, Boston Dynamics needs a benefactor with very deep pockets and a long time horizon. Initially, Boston Dynamics’ business model (or whatever you want to call it) was to do bespoke projects for defense-ish folks like DARPA, but from what we understand Boston Dynamics stopped that sort of work after Google acquired them back in 2013. From one perspective, that government funding did exactly what it was supposed to do, which was to fund the development of legged robots through low TRLs (technology readiness levels) to the point where they could start to explore commercialization.

The question now, though, is whether Hyundai is willing to let Boston Dynamics undertake the kinds of low-TRL, high-risk projects that led from BigDog to LS3 to Spot, and from PETMAN to DRC Atlas to the current Atlas. So will Hyundai be cool about the whole thing and be the sort of benefactor that’s willing to give Boston Dynamics the resources that they need to keep doing what they’re doing, without having to answer too many awkward questions about things like practicality and profitability? Hyundai can certainly afford to do this, but so could SoftBank, and Google—the question is whether Hyundai will want to, over the length of time that’s required for the development of the kind of ultra-sophisticated robotics hardware that Boston Dynamics specializes in.

To put it another way: Depending whether Hyundai’s perspective on Boston Dynamics is as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the next Atlas, when the current one still seems so far from commercialization.

Google, SoftBank, now Hyundai

Boston Dynamics possesses multiple key technologies for high-performance robots equipped with perception, navigation, and intelligence.

Hyundai Motor Group’s AI and Human Robot Interaction (HRI) expertise is highly synergistic with Boston Dynamics’s 3D vision, manipulation, and bipedal/quadruped expertise.

As it turns out, Hyundai Motors does have its own robotics lab, called Hyundai Motors Robotics Lab. Their website is not all that great, but here’s a video from last year:

I’m not entirely clear on what Hyundai means when they use the word “synergistic” when they talk about their robotics lab and Boston Dynamics, but it’s a little bit concerning. Usually, when a big company buys a little company that specializes in something that the big company is interested in, the idea is that the little company, to some extent, will be absorbed into the big company to give them some expertise in that area. Historically, however, Boston Dynamics has been highly resistant to this, maintaining its post-acquisition independence and appearing to be very reluctant to do anything besides what it wants to do, at whatever pace it wants to do it, and as by itself as possible.

From what we understand, Boston Dynamics didn’t integrate particularly well with Google’s robotics push in 2013, and we haven’t seen much evidence that SoftBank’s experience was much different. The most direct benefit to SoftBank (or at least the most visible one) was the addition of a fleet of Spot robots to the SoftBank Hawks baseball team cheerleading squad, along with a single (that we know about) choreographed gymnastics routine from an Atlas robot that was only shown on video.

And honestly, if you were a big manufacturing company with a bunch of money and you wanted to build up your own robotics program quickly, you’d probably have much better luck picking up some smaller robotics companies who were a bit less individualistic and would probably be more amenable to integration and would cost way less than a billion dollars-ish. And if integration is ultimately Hyundai’s goal, we’ll be very sad, because it’ll likely signal the end of Boston Dynamics doing the unfettered crazy stuff that we’ve grown to love.

Photo: Bob O’Connor

Possibly the most agile humanoid robot ever built, Atlas can run, climb, jump over obstacles, and even get up after a fall.

Boston Dynamics contemplates its future

The release ends by saying that the transaction is “subject to regulatory approvals and other customary closing conditions” and “is expected to close by June of 2021.” Again, you can read the whole thing here.

My initial reaction is that, despite the “synergies” described by Hyundai, it’s certainly not immediately obvious why the company wants to own 80 percent of Boston Dynamics. I’d also like a better understanding of how they arrived at the $1.1 billion valuation. I’m not saying this because I don’t believe in what Boston Dynamics is doing or in the inherent value of the company, because I absolutely do, albeit perhaps in a slightly less tangible sense. But when you start tossing around numbers like these, a big pile of expectations inevitably comes along with them. I hope that Boston Dynamics is unique enough that the kinds of rules that normally apply to robotics companies (or companies in general) can be set aside, at least somewhat, but I also worry that what made Boston Dynamics great was the explicit funding for the kinds of radical ideas that eventually resulted in robots like Atlas and Spot.

Can Hyundai continue giving Boston Dynamics the support and freedom that they need to keep doing the kinds of things that have made them legendary? I certainly hope so. Continue reading

Posted in Human Robots

#437851 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics has been fielding questions about when its robots are going to go on sale and how much they’ll cost for at least a dozen years now. I can say this with confidence, because that’s how long I’ve been a robotics journalist, and I’ve been pestering them about it the entire time. But it’s only relatively recently that the company started to make a concerted push away from developing robots exclusively for the likes of DARPA into platforms with more commercial potential, starting with a compact legged robot called Spot, first introduced in 2016.

Since then, we’ve been following closely as Spot has gone from a research platform to a product, and today, Boston Dynamics is announcing the final step in that process: commercial availability. You can now order a Spot Explorer Kit from the Boston Dynamics online store for US $74,500 (plus tax), shipping included, with delivery in 6 to 8 weeks. FINALLY!

Over the past 10 months or so, Boston Dynamics has leased Spot robots to carefully selected companies, research groups, and even a few individuals as part of their early adopter program—that’s where all of the clips in the video below came from. While there are over 100 Spots out in the world right now, getting one of them has required convincing Boston Dynamics up front that you knew more or less exactly what you wanted to do and how you wanted to do it. If you’re a big construction company or the Jet Propulsion Laboratory or Adam Savage, that’s all well and good, but for other folks who think that a Spot could be useful for them somehow and want to give it a shot, this new availability provides a fewer-strings attached opportunity to do some experimentation with the robot.

There’s a lot of cool stuff going on in that video, but we were told that the one thing that really stood out to the folks at Boston Dynamics was a 2-second clip that you can see on the left-hand side of the screen from 0:19 to 0:21. In it, Spot is somehow managing to walk across a spider web of rebar without getting tripped up, at faster than human speed. This isn’t something that Spot was specifically programmed to do, and in fact the Spot User Guide specifically identifies “rebar mesh” as an unsafe operating environment. But the robot just handles it, and that’s a big part of what makes Spot so useful—its ability to deal with (almost) whatever you can throw at it.

Before you get too excited, Boston Dynamics is fairly explicit that the current license for the robot is intended for commercial use, and the company specifically doesn’t want people to be just using it at home for fun. We know this because we asked (of course we asked), and they told us “we specifically don’t want people to just be using it at home for fun.” Drat. You can still buy one as an individual, but you have to promise that you’ll follow the terms of use and user guidelines, and it sounds like using a robot in your house might be the second-fastest way to invalidate your warranty:

SPOT IS AN AMAZING ROBOT, BUT IS NOT CERTIFIED SAFE FOR IN-HOME USE OR INTENDED FOR USE NEAR CHILDREN OR OTHERS WHO MAY NOT APPRECIATE THE HAZARDS ASSOCIATED WITH ITS OPERATION.

Not being able to get Spot to play with your kids may be disappointing, but for those of you with the sort of kids who are also students, the good news is that Boston Dynamics has carved out a niche for academic institutions, which can buy Spot at a discounted price. And if you want to buy a whole pack of Spots, there’s a bulk discount for Enterprise users as well.

What do you get for $74,500? All this!

Spot robot
Spot battery (2x)
Spot charger
Tablet controller and charger
Robot case for storage and transportation
FREE SHIPPING!

Photo: Boston Dynamics

The basic package includes the robot, two batteries, charger, a tablet controller, and a storage case.

You can view detailed specs here.

So is $75k a lot of money for a robot like Spot, or not all that much? We don’t have many useful points of comparison, partially because it’s not clear to what extent other pre-commercial quadrupedal robots (like ANYmal or Aliengo) share capabilities and features with Spot. For more perspective on Spot’s price tag, we spoke to Michael Perry, vice president of business development at Boston Dynamics.

IEEE Spectrum: Why is Spot so affordable?

Michael Perry: The main goal of selling the robot at this stage is to try to get it into the hands of as many application developers as possible, so that we can learn from the community what the biggest driver of value is for Spot. As a platform, unlocking the value of an ecosystem is our core focus right now.

Spectrum: Why is Spot so expensive?

Perry: Expensive is relative, but compared to the initial prototypes of Spot, we’ve been able to drop down the cost pretty significantly. One key thing has been designing it for robustness—we’ve put hundreds and hundreds of hours on the robot to make sure that it’s able to be successful when it falls, or when it has an electrostatic discharge. We’ve made sure that it’s able to perceive a wide variety of environments that are difficult for traditional vision-based sensors to handle. A lot of that engineering is baked into the core product so that you don’t have to worry about the mobility or robotic side of the equation, you can just focus on application development.

Photos: Boston Dynamics

Accessories for Spot include [clockwise from top left]: Spot GXP with additional ports for payload integration; Spot CAM with panorama camera and advanced comms; Spot CAM+ with pan-tilt-zoom camera for inspections; Spot EAP with lidar to enhance autonomy on large sites; Spot EAP+ with Spot CAM camera plus lidar; and Spot CORE for additional processing power.

The $75k that you’ll pay for the Spot Explorer Kit, it’s important to note, is just the base price for the robot. As with other things that fall into this price range (like a luxury car), there are all kinds of fun ways to drive that cost up with accessories, although for Spot, some of those accessories will be necessary for many (if not most) applications. For example, a couple of expansion ports to make it easier to install your own payloads on Spot will run you $1,275. An additional battery is $4,620. And if you want to really get some work done, the Enhanced Autonomy Package (with 360 cameras, lights, better comms, and a Velodyne VLP-16) will set you back an additional $34,570. If you were hoping for an arm, you’ll have to wait until the end of the year.

Each Spot also includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff” or “I tried to take my robot swimming.” For that sort of thing (user error) to be covered, you’ll need to upgrade to the $12,000 Spot CARE premium service plan to cover your robot for a year as long as you don’t subject it to willful abuse, which both of those examples I just gave probably qualify as.

While we’re on the subject of robot abuse, Boston Dynamics has very sensibly devoted a substantial amount of the Spot User Guide to help new users understand how they should not be using their robot, in order to “lessen the risk of serious injury, death, or robot and other property damage.” According to the guide, some things that could cause Spot to fall include holes, cliffs, slippery surfaces (like ice and wet grass), and cords. Spot’s sensors also get confused by “transparent, mirrored, or very bright obstacles,” and the guide specifically says Spot “may crash into glass doors and windows.” Also this: “Spot cannot predict trajectories of moving objects. Do not operate Spot around moving objects such as vehicles, children, or pets.”

We should emphasize that this is all totally reasonable, and while there are certainly a lot of things to be aware of, it’s frankly astonishing that these are the only things that Boston Dynamics explicitly warns users against. Obviously, not every potentially unsafe situation or thing is described above, but the point is that Boston Dynamics is willing to say to new users, “here’s your robot, go do stuff with it” without feeling the need to hold their hand the entire time.

There’s one more thing to be aware of before you decide to buy a Spot, which is the following:

“All orders will be subject to Boston Dynamics’ Terms and Conditions of Sale which require the beneficial use of its robots.”

Specifically, this appears to mean that you aren’t allowed to (or supposed to) use the robot in a way that could hurt living things, or “as a weapon, or to enable any weapon.” The conditions of sale also prohibit using the robot for “any illegal or ultra-hazardous purpose,” and there’s some stuff in there about it not being cool to use Spot for “nuclear, chemical, or biological weapons proliferation, or development of missile technology,” which seems weirdly specific.

“Once you make a technology more broadly available, the story of it starts slipping out of your hands. Our hope is that ahead of time we’re able to clearly articulate the beneficial uses of the robot in environments where we think the robot has a high potential to reduce the risk to people, rather than potentially causing harm.”
—Michael Perry, Boston Dynamics

I’m very glad that Boston Dynamics is being so upfront about requiring that Spot is used beneficially. However, it does put the company in a somewhat challenging position now that these robots are being sold. Boston Dynamics can (and will) perform some amount of due-diligence before shipping a Spot, but ultimately, once the robots are in someone else’s hands, there’s only so much that BD can do.

Spectrum: Why is beneficial use important to Boston Dynamics?

Perry: One of the key things that we’ve highlighted many times in our license and terms of use is that we don’t want to see the robot being used in any way that inflicts physical harm on people or animals. There are philosophical reasons for that—I think all of us don’t want to see our technology used in a way that would hurt people. But also from a business perspective, robots are really terrible at conveying intention. In order for the robot to be helpful long-term, it has to be trusted as a piece of technology. So rather than looking at a robot and wondering, “is this something that could potentially hurt me,” we want people to think “this is a robot that’s here to help me.” To the extent that people associate Boston Dynamics with cutting edge robots, we think that this is an important stance for the rollout of our first commercial product. If we find out that somebody’s violated our terms of use, their warranty is invalidated, we won’t repair their product, and we have a licensing timeout that would prevent them from accessing their robot after that timeout has expired. It’s a remediation path, but we do think that it’s important to at least provide that as something that helps enforce our position on use of our technology.

It’s very important to keep all of this in context: Spot is a tool. It’s got some autonomy and the appearance of agency, but it’s still just doing what people tell it to do, even if those things might be unsafe. If you read through the user guide, it’s clear how much of an effort Boston Dynamics is making to try to convey the importance of safety to Spot users—and ultimately, barring some unforeseen and catastrophic software or hardware issues, safety is about the users, rather than Boston Dynamics or Spot itself. I bring this up because as we start seeing more and more Spots doing things without Boston Dynamics watching over them quite so closely, accidents are likely inevitable. Spot might step on someone’s foot. It might knock someone over. If Spot was perfectly safe, it wouldn’t be useful, and we have to acknowledge that its impressive capabilities come with some risks, too.

Photo: Boston Dynamics

Each Spot includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff.”

Now that Spot is on the market for real, we’re excited to see who steps up and orders one. Depending on who the potential customer is, Spot could either seem like an impossibly sophisticated piece of technology that they’d never be able to use, or a magical way of solving all of their problems overnight. In reality, it’s of course neither of those things. For the former (folks with an idea but without a lot of robotics knowledge or experience), Spot does a lot out of the box, but BD is happy to talk with people and facilitate connections with partners who might be able to integrate specific software and hardware to get Spot to do a unique task. And for the latter (who may also be folks with an idea but without a lot of robotics knowledge or experience), BD’s Perry offers a reminder Spot is not Rosie the Robot, and would be equally happy to talk about what the technology is actually capable of doing.

Looking forward a bit, we asked Perry whether Spot’s capabilities mean that customers are starting to think beyond using robots to simply replace humans, and are instead looking at them as a way of enabling a completely different way of getting things done.

Spectrum: Do customers interested in Spot tend to think of it as a way of replacing humans at a specific task, or as a system that can do things that humans aren’t able to do?

Perry: There are what I imagine as three levels of people understanding the robot applications. Right now, we’re at level one, where you take a person out of this dangerous, dull job, and put a robot in. That’s the entry point. The second level is, using the robot, can we increase the production of that task? For example, take site documentation on a construction site—right now, people do 360 image capture of a site maybe once a week, and they might do a laser scan of the site once per project. At the second level, the question is, what if you were able to get that data collection every day, or multiple times a day? What kinds of benefits would that add to your process? To continue the construction example, the third level would be, how could we completely redesign this space now that we know that this type of automation is available? To take one example, there are some things that we cannot physically build because it’s too unsafe for people to be a part of that process, but if you were to apply robotics to that process, then you could potentially open up a huge envelope of design that has been inaccessible to people.

To order a Spot of your very own, visit shop.bostondynamics.com.

A version of this post appears in the August 2020 print issue as “$74,500 Will Fetch You a Spot.” Continue reading

Posted in Human Robots