Tag Archives: engineer

#437733 Video Friday: MIT Media Lab Developing ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Very impressive local obstacle avoidance at a fairly high speed on a small drone, both indoors and outdoors.

[ FAST Lab ]

Matt Carney writes:

My PhD at MIT Media Lab has been the design and build of a next generation powered prosthesis. The bionic ankle, named TF8, was designed to provide biologically equivalent power and range of motion for plantarflexion-dorsiflexion. This video shows the process of going from a blank sheet of paper to people walking on it. Shown are three different people wearing the robot. About a dozen people have since been able to test the hardware.

[ MIT ]

Thanks Matt!

Exciting changes are coming to the iRobot® Home App. Get ready for new personalized experiences, improved features, and an easy-to-use interface. The update is rolling out over the next few weeks!

[ iRobot ]

MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.

You lost me at “it’s like you’re interacting with a living pet.”

[ Kickstarter ] via [ Gizmodo ]

This video is only robotics-adjacent, but it has applications for robotic insects. With a high-speed tracking system, we can now follow insects as they jump and fly, and watch how clumsy (but effective) they are at it.

[ Paper ]

Thanks Sawyer!

Suzumori Endo Lab, Tokyo Tech has developed self-excited pneumatic actuators that can be integrally molded by a 3D printer. These actuators use the “automatic flow path switching mechanism” we have devised.

[ Suzimori Endo Lab ]

Quadrupeds are getting so much better at deciding where to step rather than just stepping where they like and trying not to fall over.

[ RSL ]

Omnidirectional micro aerial vehicles are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations.

[ ASL ]

The latest in smooth humanoid walking from Dr. Guero.

[ YouTube ]

Will robots replace humans one day? When it comes to space exploration, robots are our precursors, gathering data to prepare humans for deep space. ESA robotics engineer Martin Azkarate discusses some of the upcoming missions involving robots and the unique science they will perform in this episode of Meet the Experts.

[ ESA ]

The Multi-robot Systems Group at FEE-CTU in Prague is working on an autonomous drone that detects fires and the shoots an extinguisher capsule at them.

[ MRS ]

This experiment with HEAP (Hydraulic Excavator for Autonomous Purposes) demonstrates our latest research in on-site and mobile digital fabrication with found materials. The embankment prototype in natural granular material was achieved using state of the art design and construction processes in mapping, modelling, planning and control. The entire process of building the embankment was fully autonomous. An operator was only present in the cabin for safety purposes.

[ RSL ]

The Simulation, Systems Optimization and Robotics Group (SIM) of Technische Universität Darmstadt’s Department of Computer Science conducts research on cooperating autonomous mobile robots, biologically inspired robots and numerical optimization and control methods.

[ SIM ]

Starting January 1, 2021, your drone platform of choice may be severely limited by the European Union’s new drone regulations. In this short video, senseFly’s Brock Ryder explains what that means for drone programs and operators and where senseFly drones fit in the EU’s new regulatory framework.

[ SenseFly ]

Nearly every company across every industry is looking for new ways to minimize human contact, cut costs and address the labor crunch in repetitive and dangerous jobs. WSJ explores why many are looking to robots as the solution for all three.

[ WSJ ]

You’ll need to prepare yourself emotionally for this video on “Examining Users’ Attitude Towards Robot Punishment.”

[ ACM ]

In this episode of the AI Podcast, Lex interviews Russ Tedrake (MIT and TRI) about biped locomotion, the DRC, home robots, and more.

[ AI Podcast ] Continue reading

Posted in Human Robots

#437728 A Battery That’s Tough Enough To ...

Batteries can add considerable mass to any design, and they have to be supported using a sufficiently strong structure, which can add significant mass of its own. Now researchers at the University of Michigan have designed a structural zinc-air battery, one that integrates directly into the machine that it powers and serves as a load-bearing part.

That feature saves weight and thus increases effective storage capacity, adding to the already hefty energy density of the zinc-air chemistry. And the very elements that make the battery physically strong help contain the chemistry’s longstanding tendency to degrade over many hundreds of charge-discharge cycles.

The research is being published today in Science Robotics.

Nicholas Kotov, a professor of chemical engineer, is the leader of the project. He would not say how many watt-hours his prototype stores per gram, but he did note that zinc air—because it draw on ambient air for its electricity-producing reactions—is inherently about three times as energy-dense as lithium-ion cells. And, because using the battery as a structural part means dispensing with an interior battery pack, you could free up perhaps 20 percent of a machine’s interior. Along with other factors the new battery could in principle provide as much as 72 times the energy per unit of volume (not of mass) as today’s lithium-ion workhorses.

Illustration: Alice Kitterman/Science Robotics

“It’s not as if we invented something that was there before us,” Kotov says. ”I look in the mirror and I see my layer of fat—that’s for the storage of energy, but it also serves other purposes,” like keeping you warm in the wintertime. (A similar advance occurred in rocketry when designers learned how to make some liquid propellant tanks load bearing, eliminating the mass penalty of having separate external hull and internal tank walls.)

Others have spoken of putting batteries, including the lithium-ion kind, into load-bearing parts in vehicles. Ford, BMW, and Airbus, for instance, have expressed interest in the idea. The main problem to overcome is the tradeoff in load-bearing batteries between electrochemical performance and mechanical strength.

Image: Kotov Lab/University of Michigan

Key to the battery's physical toughness and to its long life cycle is the nanofiber membrane, made of Kevlar.

The Michigan group get both qualities by using a solid electrolyte (which can’t leak under stress) and by covering the electrodes with a membrane whose nanostructure of fibers is derived from Kevlar. That makes the membrane tough enough to suppress the growth of dendrites—branching fibers of metal that tend to form on an electrode with every charge-discharge cycle and which degrade the battery.

The Kevlar need not be purchased new but can be salvaged from discarded body armor. Other manufacturing steps should be easy, too, Kotov says. He has only just begun to talk to potential commercial partners, but he says there’s no reason why his battery couldn’t hit the market in the next three or four years.

Drones and other autonomous robots might be the most logical first application because their range is so severely chained to their battery capacity. Also, because such robots don’t carry people about, they face less of a hurdle from safety regulators leery of a fundamentally new battery type.

“And it’s not just about the big Amazon robots but also very small ones,” Kotov says. “Energy storage is a very significant issue for small and flexible soft robots.”

Here’s a video showing how Kotov’s lab has used batteries to form the “exoskeleton” of robots that scuttle like worms or scorpions. Continue reading

Posted in Human Robots

#437683 iRobot Remembers That Robots Are ...

iRobot has released several new robots over the last few years, including the i7 and s9 vacuums. Both of these models are very fancy and very capable, packed with innovative and useful features that we’ve been impressed by. They’re both also quite expensive—with dirt docks included, you’re looking at US $800 for the i7+, and a whopping $1,100 for the s9+. You can knock a couple hundred bucks off of those prices if you don’t want the docks, but still, these vacuums are absolutely luxury items.

If you just want something that’ll do some vacuuming so that you don’t have to, iRobot has recently announced a new Roomba option. The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400. It’s not nearly as smart as the i7 or the s9, but it can navigate (sort of) and make maps (sort of) and do some basic smart home integration. If that sounds like all you need, the i3 could be the robot vacuum for you.

iRobot calls the i3 “stylish,” and it does look pretty neat with that fabric top. Underneath, you get dual rubber primary brushes plus a side brush. There’s limited compatibility with the iRobot Home app and IFTTT, along with Alexa and Google Home. The i3 is also compatible with iRobot’s Clean Base, but that’ll cost you an extra $200, and iRobot refers to this bundle as the i3+.

The reason that the i3 only offers limited compatibility with iRobot’s app is that the i3 is missing the top-mounted camera that you’ll find in more expensive models. Instead, it relies on a downward-looking optical sensor to help it navigate, and it builds up a map as it’s cleaning by keeping track of when it bumps into obstacles and paying attention to internal sensors like a gyro and wheel odometers. The i3 can localize directly on its charging station or Clean Base (which have beacons on them that the robot can see if it’s close enough), which allows it to resume cleaning after emptying it’s bin or recharging. You’ll get a map of the area that the i3 has cleaned once it’s finished, but that map won’t persist between cleaning sessions, meaning that you can’t do things like set keep-out zones or identify specific rooms for the robot to clean. Many of the more useful features that iRobot’s app offers are based on persistent maps, and this is probably the biggest gap in functionality between the i3 and its more expensive siblings.

According to iRobot senior global product manager Sarah Wang, the kind of augmented dead-reckoning-based mapping that the i3 uses actually works really well: “Based on our internal and external testing, the performance is equivalent with our products that have cameras, like the Roomba 960,” she says. To get this level of performance, though, you do have to be careful, Wang adds. “If you kidnap i3, then it will be very confused, because it doesn’t have a reference to know where it is.” “Kidnapping” is a term that’s used often in robotics to refer to a situation in which an autonomous robot gets moved to an unmapped location, and in the context of a home robot, the best example of this is if you decide that you want your robot to vacuum a different room instead, so you pick it up and move it there.

iRobot used to make this easy by giving all of its robots carrying handles, but not anymore, because getting moved around makes things really difficult for any robot trying to keep track of where it is. While robots like the i7 can recover using their cameras to look for unique features that they recognize, the only permanent, unique landmark that the i3 can for sure identify is the beacon on its dock. What this means is that when it comes to the i3, even more than other Roomba models, the best strategy, is to just “let it do its thing,” says iRobot senior principal system engineer Landon Unninayar.

Photo: iRobot

The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400.

If you’re looking to spend a bit less than the $400 starting price of the i3, there are other options to be aware of as well. The Roomba 614, for example, does a totally decent job and costs $250. It’s scheduling isn’t very clever, it doesn’t make maps, and it won’t empty itself, but it will absolutely help keep your floors clean as long as you don’t mind being a little bit more hands-on. (And there’s also Neato’s D4, which offers basic persistent maps—and lasers!—for $330.)

The other thing to consider if you’re trying to decide between the i3 and a more expensive Roomba is that without the camera, the i3 likely won’t be able to take advantage of nearly as many of the future improvements that iRobot has said it’s working on. Spending more money on a robot with additional sensors isn’t just buying what it can do now, but also investing in what it may be able to do later on, with its more sophisticated localization and ability to recognize objects. iRobot has promised major app updates every six months, and our guess is that most of the cool new stuff is going to show in the i7 and s9. So, if your top priority is just cleaner floors, the i3 is a solid choice. But if you want a part of what iRobot is working on next, the i3 might end up holding you back. Continue reading

Posted in Human Robots

#437628 Video Friday: An In-Depth Look at Mesmer ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Bear Robotics, a robotics and artificial intelligence company, and SoftBank Robotics Group, a leading robotics manufacturer and solutions provider, have collaborated to bring a new robot named Servi to the food service and hospitality field.

[ Bear Robotics ]

A literal in-depth look at Engineered Arts’ Mesmer android.

[ Engineered Arts ]

Is your robot running ROS? Is it connected to the Internet? Are you actually in control of it right now? Are you sure?

I appreciate how the researchers admitted to finding two of their own robots as part of the scan, a Baxter and a drone.

[ Brown ]

Smile Robotics describes this as “(possibly) world’s first full-autonomous clear-up-the-table robot.”

We’re not qualified to make a judgement on the world firstness, but personally I hate clearing tables, so this robot has my vote.

Smile Robotics founder and CEO Takashi Ogura, along with chief engineer Mitsutaka Kabasawa and engineer Kazuya Kobayashi, are former Google roboticists. Ogura also worked at SCHAFT. Smile says its robot uses ROS and is controlled by a framework written mainly in Rust, adding: “We are hiring Rustacean Roboticists!”

[ Smile Robotics ]

We’re not entirely sure why, but Panasonic has released plans for an Internet of Things system for hamsters.

We devised a recipe for a “small animal healthcare device” that can measure the weight and activity of small animals, the temperature and humidity of the breeding environment, and manage their health. This healthcare device visualizes the health status and breeding environment of small animals and manages their health to promote early detection of diseases. While imagining the scene where a healthcare device is actually used for an important small animal that we treat with affection, we hope to help overcome the current difficult situation through manufacturing.

[ Panasonic ] via [ RobotStart ]

Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.

The researchers focused on processing functional materials into fiber-form so they could be integrated into fabrics while retaining its advantageous properties. For example, they made variable stiffness fibers out of an epoxy embedded with particles of Field’s metal, an alloy that liquifies at relatively low temperatures. When cool, the particles are solid metal and make the material stiffer; when warm, the particles melt into liquid and make the material softer.

[ Yale ]

In collaboration with Armasuisse and SBB, RSL demonstrated the use of a teleoperated Menzi Muck M545 to clean up a rock slide in Central Switzerland. The machine can be operated from a teloperation platform with visual and motion feedback. The walking excavator features an active chassis that can adapt to uneven terrain.

[ ETHZ RSL ]

An international team of JKU researchers is continuing to develop their vision for robots made out of soft materials. A new article in the journal “Communications Materials” demonstrates just how these kinds of soft machines react using weak magnetic fields to move very quickly. A triangle-shaped robot can roll itself in air at high speed and walk forward when exposed to an alternating in-plane square wave magnetic field (3.5 mT, 1.5 Hz). The diameter of the robot is 18 mm with a thickness of 80 µm. A six-arm robot can grab, transport, and release non-magnetic objects such as a polyurethane foam cube controlled by a permanent magnet.

Okay but tell me more about that cute sheep.

[ JKU ]

Interbotix has this “research level robotic crawler,” which both looks mean and runs ROS, a dangerous combination.

And here’s how it all came together:

[ Interbotix ]

I guess if you call them “loitering missile systems” rather than “drones that blow things up” people are less likely to get upset?

[ AeroVironment ]

In this video, we show a planner for a master dual-arm robot to manipulate tethered tools with an assistant dual-arm robot’s help. The assistant robot provides assistance to the master robot by manipulating the tool cable and avoiding collisions. The provided assistance allows the master robot to perform tool placements on the robot workspace table to regrasp the tool, which would typically fail since the tool cable tension may change the tool positions. It also allows the master robot to perform tool handovers, which would normally cause entanglements or collisions with the cable and the environment without the assistance.

[ Harada Lab ]

This video shows a flexible and robust robotic system for autonomous drawing on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates a robot motion to draw the mapped strokes using visual recognition, grasp pose reasoning, and motion planning.

[ Harada Lab ]

Weekly mobility test. This time the Warthog takes on a fallen tree. Will it cross it? The answer is in the video!

And the answer is: kinda?

[ NORLAB ]

One of the advantages of walking machines is their ability to apply forces in all directions and of various magnitudes to the environment. Many of the multi-legged robots are equipped with point contact feet as these simplify the design and control of the robot. The iStruct project focuses on the development of a foot that allows extensive contact with the environment.

[ DFKI ]

An urgent medical transport was simulated in NASA’s second Systems Integration and Operationalization (SIO) demonstration Sept. 28 with partner Bell Textron Inc. Bell used the remotely-piloted APT 70 to conduct a flight representing an urgent medical transport mission. It is envisioned in the future that an operational APT 70 could provide rapid medical transport for blood, organs, and perishable medical supplies (payload up to 70 pounds). The APT 70 is estimated to move three times as fast as ground transportation.

Always a little suspicious when the video just shows the drone flying, and sitting on the ground, but not that tricky transition between those two states.

[ NASA ]

A Lockheed Martin Robotics Seminar on “Socially Assistive Mobile Robots,” by Yi Guo from Stevens Institute of Technology.

The use of autonomous mobile robots in human environments is on the rise. Assistive robots have been seen in real-world environments, such as robot guides in airports, robot polices in public parks, and patrolling robots in supermarkets. In this talk, I will first present current research activities conducted in the Robotics and Automation Laboratory at Stevens. I’ll then focus on robot-assisted pedestrian regulation, where pedestrian flows are regulated and optimized through passive human-robot interaction.

[ UMD ]

This week’s CMU RI Seminar is by CMU’s Zachary Manchester, on “The World’s Tiniest Space Program.”

The aerospace industry has experienced a dramatic shift over the last decade: Flying a spacecraft has gone from something only national governments and large defense contractors could afford to something a small startup can accomplish on a shoestring budget. A virtuous cycle has developed where lower costs have led to more launches and the growth of new markets for space-based data. However, many barriers remain. This talk will focus on driving these trends to their ultimate limit by harnessing advances in electronics, planning, and control to build spacecraft that cost less than a new smartphone and can be deployed in large numbers.

[ CMU RI ] Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots