Tag Archives: energy

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots

#435313 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Microsoft Invests $1 Billion in OpenAI to Pursue Holy Grail of Artificial Intelligence
James Vincent | The Verge
“i‘The creation of AGI will be the most important technological development in human history, with the potential to shape the trajectory of humanity,’ said [OpenAI cofounder] Sam Altman. ‘Our mission is to ensure that AGI technology benefits all of humanity, and we’re working with Microsoft to build the supercomputing foundation on which we’ll build AGI.’i”

ROBOTICS
UPS Wants to Go Full-Scale With Its Drone Deliveries
Eric Adams | Wired
“If UPS gets its way, it’ll be known for vehicles other than its famous brown vans. The delivery giant is working to become the first commercial entity authorized by the Federal Aviation Administration to use autonomous delivery drones without any of the current restrictions that have governed the aerial testing it has done to date.”

SYNTHETIC BIOLOGY
Scientists Can Finally Build Feedback Circuits in Cells
Megan Molteni | Wired
“Network a few LOCKR-bound molecules together, and you’ve got a circuit that can control a cell’s functions the same way a PID computer program automatically adjusts the pitch of a plane. With the right key, you can make cells glow or blow themselves apart. You can send things to the cell’s trash heap or zoom them to another cellular zip code.”

ENERGY
Carbon Nanotubes Could Increase Solar Efficiency to 80 Percent
David Grossman | Popular Mechanics
“Obviously, that sort of efficiency rating is unheard of in the world of solar panels. But even though a proof of concept is a long way from being used in the real world, any further developments in the nanotubes could bolster solar panels in ways we haven’t seen yet.”

FUTURE
What Technology Is Most Likely to Become Obsolete During Your Lifetime?
Daniel Kolitz | Gizmodo
“Old technology seldom just goes away. Whiteboards and LED screens join chalk blackboards, but don’t eliminate them. Landline phones get scarce, but not phones. …And the technologies that seem to be the most outclassed may come back as a the cult objects of aficionados—the vinyl record, for example. All this is to say that no one can tell us what will be obsolete in fifty years, but probably a lot less will be obsolete than we think.”

NEUROSCIENCE
The Human Brain Project Hasn’t Lived Up to Its Promise
Ed Yong | The Atlantic
“The HBP, then, is in a very odd position, criticized for being simultaneously too grandiose and too narrow. None of the skeptics I spoke with was dismissing the idea of simulating parts of the brain, but all of them felt that such efforts should be driven by actual research questions. …Countless such projects could have been funded with the money channeled into the HBP, which explains much of the furor around the project.”

Image Credit: Aron Van de Pol / Unsplash Continue reading

Posted in Human Robots

#435152 The Futuristic Tech Disrupting Real ...

In the wake of the housing market collapse of 2008, one entrepreneur decided to dive right into the failing real estate industry. But this time, he didn’t buy any real estate to begin with. Instead, Glenn Sanford decided to launch the first-ever cloud-based real estate brokerage, eXp Realty.

Contracting virtual platform VirBELA to build out the company’s mega-campus in VR, eXp Realty demonstrates the power of a dematerialized workspace, throwing out hefty overhead costs and fundamentally redefining what ‘real estate’ really means. Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, 3 Canadian provinces, and 400 MLS market areas… all without a single physical office.

But VR is just one of many exponential technologies converging to revolutionize real estate and construction. As floating cities and driverless cars spread out your living options, AI and VR are together cutting out the middleman.

Already, the global construction industry is projected to surpass $12.9 trillion in 2022, and the total value of the US housing market alone grew to $33.3 trillion last year. Both vital for our daily lives, these industries will continue to explode in value, posing countless possibilities for disruption.

In this blog, I’ll be discussing the following trends:

New prime real estate locations;
Disintermediation of the real estate broker and search;
Materials science and 3D printing in construction.

Let’s dive in!

Location Location Location
Until today, location has been the name of the game when it comes to hunting down the best real estate. But constraints on land often drive up costs while limiting options, and urbanization is only exacerbating the problem.

Beyond the world of virtual real estate, two primary mechanisms are driving the creation of new locations.

(1) Floating Cities

Offshore habitation hubs, floating cities have long been conceived as a solution to rising sea levels, skyrocketing urban populations, and threatened ecosystems. In success, they will soon unlock an abundance of prime real estate, whether for scenic living, commerce, education, or recreation.

One pioneering model is that of Oceanix City, designed by Danish architect Bjarke Ingels and a host of other domain experts. Intended to adapt organically over time, Oceanix would consist of a galaxy of mass-produced, hexagonal floating modules, built as satellite “cities” off coastal urban centers and sustained by renewable energies.

While individual 4.5-acre platforms would each sustain 300 people, these hexagonal modules are designed to link into 75-acre tessellations sustaining up to 10,000 residents. Each anchored to the ocean floor using biorock, Oceanix cities are slated to be closed-loop systems, as external resources are continuously supplied by automated drone networks.

Electric boats or flying cars might zoom you to work, city-embedded water capture technologies would provide your water, and while vertical and outdoor farming supply your family meal, share economies would dominate goods provision.

AERIAL: Located in calm, sheltered waters, near coastal megacities, OCEANIX City will be an adaptable, sustainable, scalable, and affordable solution for human life on the ocean. Image Credit: OCEANIX/BIG-Bjarke Ingels Group.
Joined by countless government officials whose islands risk submersion at the hands of sea level rise, the UN is now getting on board. And just this year, seasteading is exiting the realm of science fiction and testing practical waters.

As French Polynesia seeks out robust solutions to sea level rise, their government has now joined forces with the San Francisco-based Seasteading Institute. With a newly designated special economic zone and 100 acres of beachfront, this joint Floating Island Project could even see up to a dozen inhabitable structures by 2020. And what better to fund the $60 million project than the team’s upcoming ICO?

But aside from creating new locations, autonomous vehicles (AVs) and flying cars are turning previously low-demand land into the prime real estate of tomorrow.

(2) Autonomous Electric Vehicles and Flying Cars

Today, the value of a location is a function of its proximity to your workplace, your city’s central business district, the best schools, or your closest friends.

But what happens when driverless cars desensitize you to distance, or Hyperloop and flying cars decimate your commute time? Historically, every time new transit methods have hit the mainstream, tolerance for distance has opened up right alongside them, further catalyzing city spread.

And just as Hyperloop and the Boring Company aim to make your commute immaterial, autonomous vehicle (AV) ridesharing services will spread out cities in two ways: (1) by drastically reducing parking spaces needed (vertical parking decks = more prime real estate); and (2) by untethering you from the steering wheel. Want an extra two hours of sleep on the way to work? Schedule a sleeper AV and nap on your route to the office. Need a car-turned-mobile-office? No problem.

Meanwhile, aerial taxis (i.e. flying cars) will allow you to escape ground congestion entirely, delivering you from bedroom to boardroom at decimated time scales.

Already working with regulators, Uber Elevate has staked ambitious plans for its UberAIR airborne taxi project. By 2023, Uber anticipates rolling out flying drones in its two first pilot cities, Los Angeles and Dallas. Flying between rooftop skyports, drones would carry passengers at a height of 1,000 to 2,000 feet at speeds between 100 to 200 mph. And while costs per ride are anticipated to resemble those of an Uber Black based on mileage, prices are projected to soon drop to those of an UberX.

But the true economic feat boils down to this: if I were to commute 50 to 100 kilometers, I could get two or three times the house for the same price. (Not to mention the extra living space offered up by my now-unneeded garage.)

All of a sudden, virtual reality, broadband, AVs, or high-speed vehicles are going to change where we live and where we work. So rather than living in a crowded, dense urban core for access to jobs and entertainment, our future of personalized, autonomous, low-cost transport opens the luxury of rural areas to all without compromising the benefits of a short commute.

Once these drivers multiply your real estate options, how will you select your next home?

Disintermediation: Say Bye to Your Broker
In a future of continuous and personalized preference-tracking, why hire a human agent who knows less about your needs and desires than a personal AI?

Just as disintermediation is cutting out bankers and insurance agents, so too is it closing in on real estate brokers. Over the next decade, as AI becomes your agent, VR will serve as your medium.

To paint a more vivid picture of how this will look, over 98 percent of your home search will be conducted from the comfort of your couch through next-generation VR headgear.

Once you’ve verbalized your primary desires for home location, finishings, size, etc. to your personal AI, it will offer you top picks, tour-able 24/7, with optional assistance by a virtual guide and constantly updated data. As a seller, this means potential buyers from two miles, or two continents, away.

Throughout each immersive VR tour, advanced eye-tracking software and a permissioned machine learning algorithm follow your gaze, further learn your likes and dislikes, and intelligently recommend other homes or commercial residences to visit.

Curious as to what the living room might look like with a fresh coat of blue paint and a white carpet? No problem! VR programs will be able to modify rendered environments instantly, changing countless variables, from furniture materials to even the sun’s orientation. Keen to input your own furniture into a VR-rendered home? Advanced AIs could one day compile all your existing furniture, electronics, clothing, decorations, and even books, virtually organizing them across any accommodating new space.

As 3D scanning technologies make extraordinary headway, VR renditions will only grow cheaper and higher resolution. One company called Immersive Media (disclosure: I’m an investor and advisor) has a platform for 360-degree video capture and distribution, and is already exploring real estate 360-degree video.

Smaller firms like Studio 216, Vieweet, Arch Virtual, ArX Solutions, and Rubicon Media can similarly capture and render models of various properties for clients and investors to view and explore. In essence, VR real estate platforms will allow you to explore any home for sale, do the remodel, and determine if it truly is the house of your dreams.

Once you’re ready to make a bid, your AI will even help estimate a bid, process and submit your offer. Real estate companies like Zillow, Trulia, Move, Redfin, ZipRealty (acquired by Realogy in 2014) and many others have already invested millions in machine learning applications to make search, valuation, consulting, and property management easier, faster, and much more accurate.

But what happens if the home you desire most means starting from scratch with new construction?

New Methods and Materials for Construction
For thousands of years, we’ve been constrained by the construction materials of nature. We built bricks from naturally abundant clay and shale, used tree limbs as our rooftops and beams, and mastered incredible structures in ancient Rome with the use of cement.

But construction is now on the cusp of a materials science revolution. Today, I’d like to focus on three key materials:

Upcycled Materials

Imagine if you could turn the world’s greatest waste products into their most essential building blocks. Thanks to UCLA researchers at CO2NCRETE, we can already do this with carbon emissions.

Today, concrete produces about five percent of all greenhouse gas (GHG) emissions. But what if concrete could instead conserve greenhouse emissions? CO2NCRETE engineers capture carbon from smokestacks and combine it with lime to create a new type of cement. The lab’s 3D printers then shape the upcycled concrete to build entirely new structures. Once conquered at scale, upcycled concrete will turn a former polluter into a future conserver.

Or what if we wanted to print new residences from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute of Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

Nanomaterials

Nano- and micro-materials are ushering in a new era of smart, super-strong, and self-charging buildings. While carbon nanotubes dramatically increase the strength-to-weight ratio of skyscrapers, revolutionizing their structural flexibility, nanomaterials don’t stop here.

Several research teams are pioneering silicon nanoparticles to capture everyday light flowing through our windows. Little solar cells at the edges of windows then harvest this energy for ready use. Researchers at the US National Renewable Energy Lab have developed similar smart windows. Turning into solar panels when bathed in sunlight, these thermochromic windows will power our buildings, changing color as they do.

Self-Healing Infrastructure

The American Society of Civil Engineers estimates that the US needs to spend roughly $4.5 trillion to fix nationwide roads, bridges, dams, and common infrastructure by 2025. But what if infrastructure could fix itself?

Enter self-healing concrete. Engineers at Delft University have developed bio-concrete that can repair its own cracks. As head researcher Henk Jonkers explains, “What makes this limestone-producing bacteria so special is that they are able to survive in concrete for more than 200 years and come into play when the concrete is damaged. […] If cracks appear as a result of pressure on the concrete, the concrete will heal these cracks itself.”

But bio-concrete is only the beginning of self-healing technologies. As futurist architecture firms start printing plastic and carbon-fiber houses like the stunner seen below (using Branch Technologies’ 3D printing technology), engineers have begun tackling self-healing plastic.

And in a bid to go smart, burgeoning construction projects have started embedding sensors for preemptive detection. Beyond materials and sensors, however, construction methods are fast colliding into robotics and 3D printing.

While some startups and research institutes have leveraged robot swarm construction (namely, Harvard’s robotic termite-like swarm of programmed constructors), others have taken to large-scale autonomous robots.

One such example involves Fastbrick Robotics. After multiple iterations, the company’s Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square meter home in under 3 days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Layhead. Image Credit: Fastbrick Robotics.
Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

Imagine the implications. Eliminating human safety concerns and unlocking any environment, autonomous builder robots could collaboratively build massive structures in space or deep underwater habitats.

Final Thoughts
Where, how, and what we live in form a vital pillar of our everyday lives. The concept of “home” is unlikely to disappear anytime soon. At the same time, real estate and construction are two of the biggest playgrounds for technological convergence, each on the verge of revolutionary disruption.

As underlying shifts in transportation, land reclamation, and the definition of “space” (real vs. virtual) take hold, the real estate market is about to explode in value, spreading out urban centers on unprecedented scales and unlocking vast new prime “property.”

Meanwhile, converging advancements in AI and VR are fundamentally disrupting the way we design, build, and explore new residences. Just as mirror worlds create immersive, virtual real estate economies, VR tours and AI agents are absorbing both sides of the coin to entirely obliterate the middleman.

And as materials science breakthroughs meet new modes of construction, the only limits to tomorrow’s structures are those of our own imagination.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: OCEANIX/BIG-Bjarke Ingels Group. Continue reading

Posted in Human Robots

#435110 5 Coming Breakthroughs in Energy and ...

The energy and transportation industries are being aggressively disrupted by converging exponential technologies.

In just five days, the sun provides Earth with an energy supply exceeding all proven reserves of oil, coal, and natural gas. Capturing just 1 part in 8,000 of this available solar energy would allow us to meet 100 percent of our energy needs.

As we leverage renewable energy supplied by the sun, wind, geothermal sources, and eventually fusion, we are rapidly heading towards a future where 100 percent of our energy needs will be met by clean tech in just 30 years.

During the past 40 years, solar prices have dropped 250-fold. And as these costs plummet, solar panel capacity continues to grow exponentially.

On the heels of energy abundance, we are additionally witnessing a new transportation revolution, which sets the stage for a future of seamlessly efficient travel at lower economic and environmental costs.

Top 5 Transportation Breakthroughs (2019-2024)
Entrepreneur and inventor Ramez Naam is my go-to expert on all things energy and environment. Currently serving as the Energy Co-Chair at Singularity University, Naam is the award-winning author of five books, including the Nexus series of science fiction novels. Having spent 13 years at Microsoft, his software has touched the lives of over a billion people. Naam holds over 20 patents, including several shared with co-inventor Bill Gates.

In the next five years, he forecasts five respective transportation and energy trends, each poised to disrupt major players and birth entirely new business models.

Let’s dive in.

Autonomous cars drive 1 billion miles on US roads. Then 10 billion

Alphabet’s Waymo alone has already reached 10 million miles driven in the US. The 600 Waymo vehicles on public roads drive a total of 25,000 miles each day, and computer simulations provide an additional 25,000 virtual cars driving constantly. Since its launch in December, the Waymo One service has transported over 1,000 pre-vetted riders in the Phoenix area.

With more training miles, the accuracy of these cars continues to improve. Since last year, GM Cruise has improved its disengagement rate by 321 percent since last year, trailing close behind with only one human intervention per 5,025 miles self-driven.

Autonomous taxis as a service in top 20 US metro areas

Along with its first quarterly earnings released last week, Lyft recently announced that it would expand its Waymo partnership with the upcoming deployment of 10 autonomous vehicles in the Phoenix area. While individuals previously had to partake in Waymo’s “early rider program” prior to trying Waymo One, the Lyft partnership will allow anyone to ride in a self-driving vehicle without a prior NDA.

Strategic partnerships will grow increasingly essential between automakers, self-driving tech companies, and rideshare services. Ford is currently working with Volkswagen, and Nvidia now collaborates with Daimler (Mercedes) and Toyota. Just last week, GM Cruise raised another $1.15 billion at a $19 billion valuation as the company aims to launch a ride-hailing service this year.

“They’re going to come to the Bay Area, Los Angeles, Houston, other cities with relatively good weather,” notes Naam. “In every major city within five years in the US and in some other parts of the world, you’re going to see the ability to hail an autonomous vehicle as a ride.”

Cambrian explosion of vehicle formats

Naam explains, “If you look today at the average ridership of a taxi, a Lyft, or an Uber, it’s about 1.1 passengers plus the driver. So, why do you need a large four-seater vehicle for that?”

Small electric, autonomous pods that seat as few as two people will begin to emerge, satisfying the majority of ride-hailing demands we see today. At the same time, larger communal vehicles will appear, such as Uber Express, that will undercut even the cheapest of transportation methods—buses, trams, and the like. Finally, last-mile scooter transit (or simply short-distance walks) might connect you to communal pick-up locations.

By 2024, an unimaginably diverse range of vehicles will arise to meet every possible need, regardless of distance or destination.

Drone delivery for lightweight packages in at least one US city

Wing, the Alphabet drone delivery startup, recently became the first company to gain approval from the Federal Aviation Administration (FAA) to make deliveries in the US. Having secured approval to deliver to 100 homes in Canberra, Australia, Wing additionally plans to begin delivering goods from local businesses in the suburbs of Virginia.

The current state of drone delivery is best suited for lightweight, urgent-demand payloads like pharmaceuticals, thumb drives, or connectors. And as Amazon continues to decrease its Prime delivery times—now as speedy as a one-day turnaround in many cities—the use of drones will become essential.

Robotic factories drive onshoring of US factories… but without new jobs

The supply chain will continue to shorten and become more agile with the re-onshoring of manufacturing jobs in the US and other countries. Naam reasons that new management and software jobs will drive this shift, as these roles develop the necessary robotics to manufacture goods. Equally as important, these robotic factories will provide a more humane setting than many of the current manufacturing practices overseas.

Top 5 Energy Breakthroughs (2019-2024)

First “1 cent per kWh” deals for solar and wind signed

Ten years ago, the lowest price of solar and wind power fell between 10 to 12 cents per kilowatt hour (kWh), over twice the price of wholesale power from coal or natural gas.

Today, the gap between solar/wind power and fossil fuel-generated electricity is nearly negligible in many parts of the world. In G20 countries, fossil fuel electricity costs between 5 to 17 cents per kWh, while the average cost per kWh of solar power in the US stands at under 10 cents.

Spanish firm Solarpack Corp Technological recently won a bid in Chile for a 120 MW solar power plant supplying energy at 2.91 cents per kWh. This deal will result in an estimated 25 percent drop in energy costs for Chilean businesses by 2021.

Naam indicates, “We will see the first unsubsidized 1.0 cent solar deals in places like Chile, Mexico, the Southwest US, the Middle East, and North Africa, and we’ll see similar prices for wind in places like Mexico, Brazil, and the US Great Plains.”

Solar and wind will reach >15 percent of US electricity, and begin to drive all growth

Just over eight percent of energy in the US comes from solar and wind sources. In total, 17 percent of American energy is derived from renewable sources, while a whopping 63 percent is sourced from fossil fuels, and 17 percent from nuclear.

Last year in the U.K., twice as much energy was generated from wind than from coal. For over a week in May, the U.K. went completely coal-free, using wind and solar to supply 35 percent and 21 percent of power, respectively. While fossil fuels remain the primary electricity source, this week-long experiment highlights the disruptive potential of solar and wind power that major countries like the U.K. are beginning to emphasize.

“Solar and wind are still a relatively small part of the worldwide power mix, only about six percent. Within five years, it’s going to be 15 percent in the US and more than close to that worldwide,” Naam predicts. “We are nearing the point where we are not building any new fossil fuel power plants.”

It will be cheaper to build new solar/wind/batteries than to run on existing coal

Last October, Northern Indiana utility company NIPSCO announced its transition from a 65 percent coal-powered state to projected coal-free status by 2028. Importantly, this decision was made purely on the basis of financials, with an estimated $4 billion in cost savings for customers. The company has already begun several initiatives in solar, wind, and batteries.

NextEra, the largest power generator in the US, has taken on a similar goal, making a deal last year to purchase roughly seven million solar panels from JinkoSolar over four years. Leading power generators across the globe have vocalized a similar economic case for renewable energy.

ICE car sales have now peaked. All car sales growth will be electric

While electric vehicles (EV) have historically been more expensive for consumers than internal combustion engine-powered (ICE) cars, EVs are cheaper to operate and maintain. The yearly cost of operating an EV in the US is about $485, less than half the $1,117 cost of operating a gas-powered vehicle.

And as battery prices continue to shrink, the upfront costs of EVs will decline until a long-term payoff calculation is no longer required to determine which type of car is the better investment. EVs will become the obvious choice.

Many experts including Naam believe that ICE-powered vehicles peaked worldwide in 2018 and will begin to decline over the next five years, as has already been demonstrated in the past five months. At the same time, EVs are expected to quadruple their market share to 1.6 percent this year.

New storage technologies will displace Li-ion batteries for tomorrow’s most demanding applications

Lithium ion batteries have dominated the battery market for decades, but Naam anticipates new storage technologies will take hold for different contexts. Flow batteries, which can collect and store solar and wind power at large scales, will supply city grids. Already, California’s Independent System Operator, the nonprofit that maintains the majority of the state’s power grid, recently installed a flow battery system in San Diego.

Solid-state batteries, which consist of entirely solid electrolytes, will supply mobile devices in cars. A growing body of competitors, including Toyota, BMW, Honda, Hyundai, and Nissan, are already working on developing solid-state battery technology. These types of batteries offer up to six times faster charging periods, three times the energy density, and eight years of added lifespan, compared to lithium ion batteries.

Final Thoughts
Major advancements in transportation and energy technologies will continue to converge over the next five years. A case in point, Tesla’s recent announcement of its “robotaxi” fleet exemplifies the growing trend towards joint priority of sustainability and autonomy.

On the connectivity front, 5G and next-generation mobile networks will continue to enable the growth of autonomous fleets, many of which will soon run on renewable energy sources. This growth demands important partnerships between energy storage manufacturers, automakers, self-driving tech companies, and ridesharing services.

In the eco-realm, increasingly obvious economic calculi will catalyze consumer adoption of autonomous electric vehicles. In just five years, Naam predicts that self-driving rideshare services will be cheaper than owning a private vehicle for urban residents. And by the same token, plummeting renewable energy costs will make these fuels far more attractive than fossil fuel-derived electricity.

As universally optimized AI systems cut down on traffic, aggregate time spent in vehicles will decimate, while hours in your (or not your) car will be applied to any number of activities as autonomous systems steer the way. All the while, sharing an electric vehicle will cut down not only on your carbon footprint but on the exorbitant costs swallowed by your previous SUV. How will you spend this extra time and money? What new natural resources will fuel your everyday life?

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: welcomia / Shutterstock.com Continue reading

Posted in Human Robots

#435080 12 Ways Big Tech Can Take Big Action on ...

Bill Gates and Mark Zuckerberg have invested $1 billion in Breakthrough Energy to fund next-generation solutions to tackle climate. But there is a huge risk that any successful innovation will only reach the market as the world approaches 2030 at the earliest.

We now know that reducing the risk of dangerous climate change means halving global greenhouse gas emissions by that date—in just 11 years. Perhaps Gates, Zuckerberg, and all the tech giants should invest equally in innovations to do with how their own platforms —search, social media, eCommerce—can support societal behavior changes to drive down emissions.

After all, the tech giants influence the decisions of four billion consumers every day. It is time for a social contract between tech and society.

Recently myself and collaborator Johan Falk published a report during the World Economic Forum in Davos outlining 12 ways the tech sector can contribute to supporting societal goals to stabilize Earth’s climate.

Become genuine climate guardians

Tech giants go to great lengths to show how serious they are about reducing their emissions. But I smell cognitive dissonance. Google and Microsoft are working in partnership with oil companies to develop AI tools to help maximize oil recovery. This is not the behavior of companies working flat-out to stabilize Earth’s climate. Indeed, few major tech firms have visions that indicate a stable and resilient planet might be a good goal, yet AI alone has the potential to slash greenhouse gas emissions by four percent by 2030—equivalent to the emissions of Australia, Canada, and Japan combined.

We are now developing a playbook, which we plan to publish later this year at the UN climate summit, about making it as simple as possible for a CEO to become a climate guardian.

Hey Alexa, do you care about the stability of Earth’s climate?

Increasingly, consumers are delegating their decisions to narrow artificial intelligence like Alexa and Siri. Welcome to a world of zero-click purchases.

Should algorithms and information architecture be designed to nudge consumer behavior towards low-carbon choices, for example by making these options the default? We think so. People don’t mind being nudged; in fact, they welcome efforts to make their lives better. For instance, if I want to lose weight, I know I will need all the help I can get. Let’s ‘nudge for good’ and experiment with supporting societal goals.

Use social media for good

Facebook’s goal is to bring the world closer together. With 2.2 billion users on the platform, CEO Mark Zuckerberg can reasonably claim this goal is possible. But social media has changed the flow of information in the world, creating a lucrative industry around a toxic brown-cloud of confusion and anger, with frankly terrifying implications for democracy. This has been linked to the rise of nationalism and populism, and to the election of leaders who shun international cooperation, dismiss scientific knowledge, and reverse climate action at a moment when we need it more than ever.

Social media tools need re-engineering to help people make sense of the world, support democratic processes, and build communities around societal goals. Make this your mission.

Design for a future on Earth

Almost everything is designed with computer software, from buildings to mobile phones to consumer packaging. It is time to make zero-carbon design the new default and design products for sharing, re-use and disassembly.

The future is circular

Halving emissions in a decade will require all companies to adopt circular business models to reduce material use. Some tech companies are leading the charge. Apple has committed to becoming 100 percent circular as soon as possible. Great.

While big tech companies strive to be market leaders here, many other companies lack essential knowledge. Tech companies can support rapid adoption in different economic sectors, not least because they have the know-how to scale innovations exponentially. It makes business sense. If economies of scale drive the price of recycled steel and aluminium down, everyone wins.

Reward low-carbon consumption

eCommerce platforms can create incentives for low-carbon consumption. The world’s largest experiment in greening consumer behavior is Ant Forest, set up by Chinese fintech giant Ant Financial.

An estimated 300 million customers—similar to the population of the United States—gain points for making low-carbon choices such as walking to work, using public transport, or paying bills online. Virtual points are eventually converted into real trees. Sure, big questions remain about its true influence on emissions, but this is a space for rapid experimentation for big impact.

Make information more useful

Science is our tool for defining reality. Scientific consensus is how we attain reliable knowledge. Even after the information revolution, reliable knowledge about the world remains fragmented and unstructured. Build the next generation of search engines to genuinely make the world’s knowledge useful for supporting societal goals.

We need to put these tools towards supporting shared world views of the state of the planet based on the best science. New AI tools being developed by startups like Iris.ai can help see through the fog. From Alexa to Google Home and Siri, the future is “Voice”, but who chooses the information source? The highest bidder? Again, the implications for climate are huge.

Create new standards for digital advertising and marketing

Half of global ad revenue will soon be online, and largely going to a small handful of companies. How about creating a novel ethical standard on what is advertised and where? Companies could consider promoting sustainable choices and healthy lifestyles and limiting advertising of high-emissions products such as cheap flights.

We are what we eat

It is no secret that tech is about to disrupt grocery. The supermarkets of the future will be built on personal consumer data. With about two billion people either obese or overweight, revolutions in choice architecture could support positive diet choices, reduce meat consumption, halve food waste and, into the bargain, slash greenhouse gas emissions.

The future of transport is not cars, it’s data

The 2020s look set to be the biggest disruption of the automobile industry since Henry Ford unveiled the Model T. Two seismic shifts are on their way.

First, electric cars now compete favorably with petrol engines on range. Growth will reach an inflection point within a year or two once prices reach parity. The death of the internal combustion engine in Europe and Asia is assured with end dates announced by China, India, France, the UK, and most of Scandinavia. Dates range from 2025 (Norway) to 2040 (UK and China).

Tech giants can accelerate the demise. Uber recently announced a passenger surcharge to help London drivers save around $1,500 a year towards the cost of an electric car.

Second, driverless cars can shift the transport economic model from ownership to service and ride sharing. A complete shift away from privately-owned vehicles is around the corner, with large implications for emissions.

Clean-energy living and working

Most buildings are barely used and inefficiently heated and cooled. Digitization can slash this waste and its corresponding emissions through measurement, monitoring, and new business models to use office space. While, just a few unicorns are currently in this space, the potential is enormous. Buildings are one of the five biggest sources of emissions, yet have the potential to become clean energy producers in a distributed energy network.

Creating liveable cities

More cities are setting ambitious climate targets to halve emissions in a decade or even less. Tech companies can support this transition by driving demand for low-carbon services for their workforces and offices, but also by providing tools to help monitor emissions and act to reduce them. Google, for example, is collecting travel and other data from across cities to estimate emissions in real time. This is possible through technologies like artificial intelligence and the internet of things. But beware of smart cities that turn out to be not so smart. Efficiencies can reduce resilience when cities face crises.

It’s a Start
Of course, it will take more than tech to solve the climate crisis. But tech is a wildcard. The actions of the current tech giants and their acolytes could serve to destabilize the climate further or bring it under control.

We need a new social contract between tech companies and society to achieve societal goals. The alternative is unthinkable. Without drastic action now, climate chaos threatens to engulf us all. As this future approaches, regulators will be forced to take ever more draconian action to rein in the problem. Acting now will reduce that risk.

Note: A version of this article was originally published on World Economic Forum

Image Credit: Bruce Rolff / Shutterstock.com Continue reading

Posted in Human Robots