Tag Archives: encounter
#433758 DeepMind’s New Research Plan to Make ...
Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.
AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.
That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.
In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.
A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.
Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.
The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.
Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.
Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.
And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.
The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.
The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.
Image Credit: cono0430 / Shutterstock.com Continue reading
#433728 AI Is Kicking Space Exploration into ...
Artificial intelligence in space exploration is gathering momentum. Over the coming years, new missions look likely to be turbo-charged by AI as we voyage to comets, moons, and planets and explore the possibilities of mining asteroids.
“AI is already a game-changer that has made scientific research and exploration much more efficient. We are not just talking about a doubling but about a multiple of ten,” Leopold Summerer, Head of the Advanced Concepts and Studies Office at ESA, said in an interview with Singularity Hub.
Examples Abound
The history of AI and space exploration is older than many probably think. It has already played a significant role in research into our planet, the solar system, and the universe. As computer systems and software have developed, so have AI’s potential use cases.
The Earth Observer 1 (EO-1) satellite is a good example. Since its launch in the early 2000s, its onboard AI systems helped optimize analysis of and response to natural occurrences, like floods and volcanic eruptions. In some cases, the AI was able to tell EO-1 to start capturing images before the ground crew were even aware that the occurrence had taken place.
Other satellite and astronomy examples abound. Sky Image Cataloging and Analysis Tool (SKICAT) has assisted with the classification of objects discovered during the second Palomar Sky Survey, classifying thousands more objects caught in low resolution than a human would be able to. Similar AI systems have helped astronomers to identify 56 new possible gravitational lenses that play a crucial role in connection with research into dark matter.
AI’s ability to trawl through vast amounts of data and find correlations will become increasingly important in relation to getting the most out of the available data. ESA’s ENVISAT produces around 400 terabytes of new data every year—but will be dwarfed by the Square Kilometre Array, which will produce around the same amount of data that is currently on the internet in a day.
AI Readying For Mars
AI is also being used for trajectory and payload optimization. Both are important preliminary steps to NASA’s next rover mission to Mars, the Mars 2020 Rover, which is, slightly ironically, set to land on the red planet in early 2021.
An AI known as AEGIS is already on the red planet onboard NASA’s current rovers. The system can handle autonomous targeting of cameras and choose what to investigate. However, the next generation of AIs will be able to control vehicles, autonomously assist with study selection, and dynamically schedule and perform scientific tasks.
Throughout his career, John Leif Jørgensen from DTU Space in Denmark has designed equipment and systems that have been on board about 100 satellites—and counting. He is part of the team behind the Mars 2020 Rover’s autonomous scientific instrument PIXL, which makes extensive use of AI. Its purpose is to investigate whether there have been lifeforms like stromatolites on Mars.
“PIXL’s microscope is situated on the rover’s arm and needs to be placed 14 millimetres from what we want it to study. That happens thanks to several cameras placed on the rover. It may sound simple, but the handover process and finding out exactly where to place the arm can be likened to identifying a building from the street from a picture taken from the roof. This is something that AI is eminently suited for,” he said in an interview with Singularity Hub.
AI also helps PIXL operate autonomously throughout the night and continuously adjust as the environment changes—the temperature changes between day and night can be more than 100 degrees Celsius, meaning that the ground beneath the rover, the cameras, the robotic arm, and the rock being studied all keep changing distance.
“AI is at the core of all of this work, and helps almost double productivity,” Jørgensen said.
First Mars, Then Moons
Mars is likely far from the final destination for AIs in space. Jupiter’s moons have long fascinated scientists. Especially Europa, which could house a subsurface ocean, buried beneath an approximately 10 km thick ice crust. It is one of the most likely candidates for finding life elsewhere in the solar system.
While that mission may be some time in the future, NASA is currently planning to launch the James Webb Space Telescope into an orbit of around 1.5 million kilometers from Earth in 2020. Part of the mission will involve AI-empowered autonomous systems overseeing the full deployment of the telescope’s 705-kilo mirror.
The distances between Earth and Europa, or Earth and the James Webb telescope, means a delay in communications. That, in turn, makes it imperative for the crafts to be able to make their own decisions. Examples from the Mars Rover project show that communication between a rover and Earth can take 20 minutes because of the vast distance. A Europa mission would see much longer communication times.
Both missions, to varying degrees, illustrate one of the most significant challenges currently facing the use of AI in space exploration. There tends to be a direct correlation between how well AI systems perform and how much data they have been fed. The more, the better, as it were. But we simply don’t have very much data to feed such a system about what it’s likely to encounter on a mission to a place like Europa.
Computing power presents a second challenge. A strenuous, time-consuming approval process and the risk of radiation mean that your computer at home would likely be more powerful than anything going into space in the near future. A 200 GHz processor, 256 megabytes of ram, and 2 gigabytes of memory sounds a lot more like a Nokia 3210 (the one you could use as an ice hockey puck without it noticing) than an iPhone X—but it’s actually the ‘brain’ that will be onboard the next rover.
Private Companies Taking Off
Private companies are helping to push those limitations. CB Insights charts 57 startups in the space-space, covering areas as diverse as natural resources, consumer tourism, R&D, satellites, spacecraft design and launch, and data analytics.
David Chew works as an engineer for the Japanese satellite company Axelspace. He explained how private companies are pushing the speed of exploration and lowering costs.
“Many private space companies are taking advantage of fall-back systems and finding ways of using parts and systems that traditional companies have thought of as non-space-grade. By implementing fall-backs, and using AI, it is possible to integrate and use parts that lower costs without adding risk of failure,” he said in an interview with Singularity Hub.
Terraforming Our Future Home
Further into the future, moonshots like terraforming Mars await. Without AI, these kinds of projects to adapt other planets to Earth-like conditions would be impossible.
Autonomous crafts are already terraforming here on Earth. BioCarbon Engineering uses drones to plant up to 100,000 trees in a single day. Drones first survey and map an area, then an algorithm decides the optimal locations for the trees before a second wave of drones carry out the actual planting.
As is often the case with exponential technologies, there is a great potential for synergies and convergence. For example with AI and robotics, or quantum computing and machine learning. Why not send an AI-driven robot to Mars and use it as a telepresence for scientists on Earth? It could be argued that we are already in the early stages of doing just that by using VR and AR systems that take data from the Mars rovers and create a virtual landscape scientists can walk around in and make decisions on what the rovers should explore next.
One of the biggest benefits of AI in space exploration may not have that much to do with its actual functions. Chew believes that within as little as ten years, we could see the first mining of asteroids in the Kuiper Belt with the help of AI.
“I think one of the things that AI does to space exploration is that it opens up a whole range of new possible industries and services that have a more immediate effect on the lives of people on Earth,” he said. “It becomes a relatable industry that has a real effect on people’s daily lives. In a way, space exploration becomes part of people’s mindset, and the border between our planet and the solar system becomes less important.”
Image Credit: Taily / Shutterstock.com Continue reading
#433506 MIT’s New Robot Taught Itself to Pick ...
Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.
Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.
This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.
The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.
This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.
Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.
Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.
Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.
But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.
This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.
The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.
This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.
“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”
Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.
Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.
As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.
This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.
Image Credit: Tom Buehler/CSAIL Continue reading
#432646 How Fukushima Changed Japanese Robotics ...
In March 2011, Japan was hit by a catastrophic earthquake that triggered a terrible tsunami. Thousands were killed and billions of dollars of damage was done in one of the worst disasters of modern times. For a few perilous weeks, though, the eyes of the world were focused on the Fukushima Daiichi nuclear power plant. Its safety systems were unable to cope with the tsunami damage, and there were widespread fears of another catastrophic meltdown that could spread radiation over several countries, like the Chernobyl disaster in the 1980s. A heroic effort that included dumping seawater into the reactor core prevented an even bigger catastrophe. As it is, a hundred thousand people are still evacuated from the area, and it will likely take many years and hundreds of billions of dollars before the region is safe.
Because radiation is so dangerous to humans, the natural solution to the Fukushima disaster was to send in robots to monitor levels of radiation and attempt to begin the clean-up process. The techno-optimists in Japan had discovered a challenge, deep in the heart of that reactor core, that even their optimism could not solve. The radiation fried the circuits of the robots that were sent in, even those specifically designed and built to deal with the Fukushima catastrophe. The power plant slowly became a vast robot graveyard. While some robots initially saw success in measuring radiation levels around the plant—and, recently, a robot was able to identify the melted uranium fuel at the heart of the disaster—hopes of them playing a substantial role in the clean-up are starting to diminish.
In Tokyo’s neon Shibuya district, it can sometimes seem like it’s brighter at night than it is during the daytime. In karaoke booths on the twelfth floor—because everything is on the twelfth floor—overlooking the brightly-lit streets, businessmen unwind by blasting out pop hits. It can feel like the most artificial place on Earth; your senses are dazzled by the futuristic techno-optimism. Stock footage of the area has become symbolic of futurism and modernity.
Japan has had a reputation for being a nation of futurists for a long time. We’ve already described how tech giant Softbank, headed by visionary founder Masayoshi Son, is investing billions in a technological future, including plans for the world’s largest solar farm.
When Google sold pioneering robotics company Boston Dynamics in 2017, Softbank added it to their portfolio, alongside the famous Nao and Pepper robots. Some may think that Son is taking a gamble in pursuing a robotics project even Google couldn’t succeed in, but this is a man who lost nearly everything in the dot-com crash of 2000. The fact that even this reversal didn’t dent his optimism and faith in technology is telling. But how long can it last?
The failure of Japan’s robots to deal with the immense challenge of Fukushima has sparked something of a crisis of conscience within the industry. Disaster response is an obvious stepping-stone technology for robots. Initially, producing a humanoid robot will be very costly, and the robot will be less capable than a human; building a robot to wait tables might not be particularly economical yet. Building a robot to do jobs that are too dangerous for humans is far more viable. Yet, at Fukushima, in one of the most advanced nations in the world, many of the robots weren’t up to the task.
Nowhere was this crisis more felt than Honda; the company had developed ASIMO, which stunned the world in 2000 and continues to fascinate as an iconic humanoid robot. Despite all this technological advancement, however, Honda knew that ASIMO was still too unreliable for the real world.
It was Fukushima that triggered a sea-change in Honda’s approach to robotics. Two years after the disaster, there were rumblings that Honda was developing a disaster robot, and in October 2017, the prototype was revealed to the public for the first time. It’s not yet ready for deployment in disaster zones, however. Interestingly, the creators chose not to give it dexterous hands but instead to assume that remotely-operated tools fitted to the robot would be a better solution for the range of circumstances it might encounter.
This shift in focus for humanoid robots away from entertainment and amusement like ASIMO, and towards being practically useful, has been mirrored across the world.
In 2015, also inspired by the Fukushima disaster and the lack of disaster-ready robots, the DARPA Robotics Challenge tested humanoid robots with a range of tasks that might be needed in emergency response, such as driving cars, opening doors, and climbing stairs. The Terminator-like ATLAS robot from Boston Dynamics, alongside Korean robot HUBO, took many of the plaudits, and CHIMP also put in an impressive display by being able to right itself after falling.
Yet the DARPA Robotics Challenge showed us just how far the robots are from truly being as useful as we’d like, or maybe even as we would imagine. Many robots took hours to complete the tasks, which were highly idealized to suit them. Climbing stairs proved a particular challenge. Those who watched were more likely to see a robot that had fallen over, struggling to get up, rather than heroic superbots striding in to save the day. The “striding” proved a particular problem, with the fastest robot HUBO managing this by resorting to wheels in its knees when the legs weren’t necessary.
Fukushima may have brought a sea-change over futuristic Japan, but before robots will really begin to enter our everyday lives, they will need to prove their worth. In the interim, aerial drone robots designed to examine infrastructure damage after disasters may well see earlier deployment and more success.
It’s a considerable challenge.
Building a humanoid robot is expensive; if these multi-million-dollar machines can’t help in a crisis, people may begin to question the worth of investing in them in the first place (unless your aim is just to make viral videos). This could lead to a further crisis of confidence among the Japanese, who are starting to rely on humanoid robotics as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.
But if they continue to fail when put to the test, that will raise serious concerns. In Tokyo’s Akihabara district, you can see all kinds of flash robotic toys for sale in the neon-lit superstores, and dancing, acting robots like Robothespian can entertain crowds all over the world. But if we want these machines to be anything more than toys—partners, helpers, even saviors—more work needs to be done.
At the same time, those who participated in the DARPA Robotics Challenge in 2015 won’t be too concerned if people were underwhelmed by the performance of their disaster relief robots. Back in 2004, nearly every participant in the DARPA Grand Challenge crashed, caught fire, or failed on the starting line. To an outside observer, the whole thing would have seemed like an unmitigated disaster, and a pointless investment. What was the task in 2004? Developing a self-driving car. A lot can change in a decade.
Image Credit: MARCUSZ2527 / Shutterstock.com Continue reading