Tag Archives: emotions

#436184 Why People Demanded Privacy to Confide ...

This is part four of a six-part series on the history of natural language processing.

Between 1964 and 1966, Joseph Weizenbaum, a German American computer scientist at MIT’s artificial intelligence lab, developed the first-ever chatbot [PDF].

While there were already some rudimentary digital language generators in existence—programs that could spit out somewhat coherent lines of text—Weizenbaum’s program was the first designed explicitly for interactions with humans. The user could type in some statement or set of statements in their normal language, press enter, and receive a response from the machine. As Weizenbaum explained, his program made “certain kinds of natural-language conversation between man and computer possible.”

He named the program Eliza after Eliza Doolittle, the working-class hero of George Bernard Shaw’s Pygmalion who learns how to talk with an upper-class accent. The new Eliza was written for the 36-bit IBM 7094, an early transistorized mainframe computer, in a programming language that Weizenbaum developed called MAD-SLIP.

Because computer time was a valuable resource, Eliza could only be run via a time-sharing system; the user interacted with the program remotely via an electric typewriter and printer. When the user typed in a sentence and pressed enter, a message was sent to the mainframe computer. Eliza scanned the message for the presence of a keyword and used it in a new sentence to form a response that was sent back, printed out, and read by the user.

To encourage ongoing dialogue, Weizenbaum designed Eliza to simulate the type of conversational style used by a Rogerian psychoanalyst. The program would take something the user said and reflect it back with a question, as can be seen in the example below. (Notice how the program takes keywords like “boyfriend” and “depressed” and re-uses them.)

Human: Men are all alike.

Computer: IN WHAT WAY?

Human: They're always bugging us about something or other.

Computer: CAN YOU THINK OF A SPECIFIC EXAMPLE?

Human: Well, my boyfriend made me come here.

Computer: YOUR BOYFRIEND MADE YOU COME HERE

Human: He says I'm depressed much of the time.

Computer: I AM SORRY TO HEAR YOU ARE DEPRESSED

Human: It's true. I am unhappy.

Weizenbaum chose this mode of dialogue for Eliza because it gave the impression that the computer understood what was being said without having to offer anything new to the conversation. It created the illusion of comprehension and engagement in a mere 200 lines of code.

To test Eliza’s capacity to engage an interlocutor, Weizenbaum invited students and colleagues into his office and let them chat with the machine while he looked on. He noticed, with some concern, that during their brief interactions with Eliza, many users began forming emotional attachments to the algorithm. They would open up to the machine and confess problems they were facing in their lives and relationships.

During their brief interactions with Eliza, many users began forming emotional attachments to the algorithm.

Even more surprising was that this sense of intimacy persisted even after Weizenbaum described how the machine worked and explained that it didn’t really understand anything that was being said. Weizenbaum was most troubled when his secretary, who had watched him build the program from scratch over many months, insisted that he leave the room so she could talk to Eliza in private.

For Weizenbaum, this experiment with Eliza made him question an idea that Alan Turing had proposed in 1950 about machine intelligence. In his paper, entitled “Computing Machinery and Intelligence,” Turing suggested that if a computer could conduct a convincingly human conversation in text, one could assume it was intelligent—an idea that became the basis of the famous Turing Test.

But Eliza demonstrated that convincing communication between a human and a machine could take place even if comprehension only flowed from one side: The simulation of intelligence, rather than intelligence itself, was enough to fool people. Weizenbaum called this the Eliza effect, and believed it was a type of “delusional thinking” that humanity would collectively suffer from in the digital age. This insight was a profound shock for Weizenbaum, and one that came to define his intellectual trajectory over the next decade.

The simulation of intelligence, rather than intelligence itself, was enough to fool people.

In 1976, he published Computing Power and Human Reason: From Judgment to Calculation [PDF], which offered a long meditation on why people are willing to believe that a simple machine might be able to understand their complex human emotions.

In this book, he argues that the Eliza effect signifies a broader pathology afflicting “modern man.” In a world conquered by science, technology, and capitalism, people had grown accustomed to viewing themselves as isolated cogs in a large and uncaring machine. In such a diminished social world, Weizenbaum reasoned, people had grown so desperate for connection that they put aside their reason and judgment in order to believe that a program could care about their problems.

Weizenbaum spent the rest of his life developing this humanistic critique of artificial intelligence and digital technology. His mission was to remind people that their machines were not as smart as they were often said to be. And that even though it sometimes appeared as though they could talk, they were never really listening.

This is the fourth installment of a six-part series on the history of natural language processing. Last week’s post described Andrey Markov and Claude Shannon’s painstaking efforts to create statistical models of language for text generation. Come back next Monday for part five, “In 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Conversation.”

You can also check out our prior series on the untold history of AI. Continue reading

Posted in Human Robots

#435742 This ‘Useless’ Social Robot ...

The recent high profile failures of some home social robots (and the companies behind them) have made it even more challenging than it was before to develop robots in that space. And it was challenging enough to begin with—making a robot that can autonomous interact with random humans in their homes over a long period of time for a price that people can afford is extraordinarily difficult. However, the massive amount of initial interest in robots like Jibo, Kuri, Vector, and Buddy prove that people do want these things, or at least think they do, and while that’s the case, there’s incentive for other companies to give social home robots a try.

One of those companies is Zoetic, founded in 2107 by Mita Yun and Jitu Das, both ex-Googlers. Their robot, Kiki, is more or less exactly what you’d expect from a social home robot: It’s cute, white, roundish, has big eyes, promises that it will be your “robot sidekick,” and is not cheap: It’s on Kicksterter for $800. Kiki is among what appears to be a sort of tentative second wave of social home robots, where designers have (presumably) had a chance to take everything that they learned from the social home robot pioneers and use it to make things better this time around.

Kiki’s Kickstarter video is, again, more or less exactly what you’d expect from a social home robot crowdfunding campaign:

We won’t get into all of the details on Kiki in this article (the Kickstarter page has tons of information), but a few distinguishing features:

Each Kiki will develop its own personality over time through its daily interactions with its owner, other people, and other Kikis.
Interacting with Kiki is more abstract than with most robots—it can understand some specific words and phrases, and will occasionally use a few specific words or two, but otherwise it’s mostly listening to your tone of voice and responding with sounds rather than speech.
Kiki doesn’t move on its own, but it can operate for up to two hours away from its charging dock.
Depending on how your treat Kiki, it can get depressed or neurotic. It also needs to be fed, which you can do by drawing different kinds of food in the app.
Everything Kiki does runs on-board the robot. It has Wi-Fi connectivity for updates, but doesn’t rely on the cloud for anything in real-time, meaning that your data stays on the robot and that the robot will continue to function even if its remote service shuts down.

It’s hard to say whether features like these are unique enough to help Kiki be successful where other social home robots haven’t been, so we spoke with Zoetic co-founder Mita Yun and asked her why she believes that Kiki is going to be the social home robot that makes it.

IEEE Spectrum: What’s your background?

Mita Yun: I was an only child growing up, and so I always wanted something like Doraemon or Totoro. Something that when you come home it’s there to greet you, not just because it’s programmed to do that but because it’s actually actively happy to see you, and only you. I was so interested in this that I went to study robotics at CMU and then after I graduated I joined Google and worked there for five years. I tended to go for the more risky and more fun projects, but they always got cancelled—the first project I joined was called Android at Home, and then I joined Google Glass, and then I joined a team called Robots for Kids. That project was building educational robots, and then I just realized that when we’re adding technology to something, to a product, we’re actually taking the life away somehow, and the kids were more connected with stuffed animals compared to the educational robots we were building. That project was also cancelled, and in 2017, I left with a coworker of mine (Jitu Das) to bring this dream into reality. And now we’re building Kiki.

“Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless”
—Mita Yun, Zoetic

You started working on Kiki in 2017, when things were already getting challenging for Jibo—why did you decide to start developing a social home robot at that point?

I thought Jibo was great. It had a special magical way of moving, and it was such a new idea that you could have this robot with embodiment and it can actually be your assistant. The problem with Jibo, in my opinion, was that it took too long to fulfill the orders. It took them three to four years to actually manufacture, because it was a very complex piece of hardware, and then during that period of time Alexa and Google Home came out, and they started selling these voice systems for $30 and then you have Jibo for $800. Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless.

Can you elaborate on “completely useless?”

I feel like people are initially connected with robots because they remind them of a character. And it’s the closest we can get to a character other than an organic character like an animal. So we’re connected to a character like when we have a robot in a mall that’s roaming around, even if it looks really ugly, like if it doesn’t have eyes, people still take selfies with it. Why? Because they think it’s a character. And humans are just hardwired to love characters and love stories. With Kiki, we just wanted to build a character that’s alive, we don’t want to have a character do anything super useful.

I understand why other robotics companies are adding Alexa integration to their robots, and I think that’s great. But the dream I had, and the understanding I have about robotics technology, is that for a consumer robot especially, it is very very difficult for the robot to justify its price through usefulness. And then there’s also research showing that the more useless something is, the easier it is to have an emotional connection, so that’s why we want to keep Kiki very useless.

What kind of character are you creating with Kiki?

The whole design principle around Kiki is we want to make it a very vulnerable character. In terms of its status at home, it’s not going to be higher or equal status as the owner, but slightly lower status than the human, and it’s vulnerable and needs you to take care of it in order to grow up into a good personality robot.

We don’t let Kiki speak full English sentences, because whenever it does that, people are going to think it’s at least as intelligent as a baby, which is impossible for robots at this point. And we also don’t let it move around, because when you have it move around, people are going to think “I’m going to call Kiki’s name, and then Kiki is will come to me.” But that is actually very difficult to build. And then also we don’t have any voice integration so it doesn’t tell you about the stock market price and so on.

Photo: Zoetic

Kiki is designed to be “vulnerable,” and it needs you to take care of it so it can “grow up into a good personality robot,” according to its creators.

That sounds similar to what Mayfield did with Kuri, emphasizing an emotional connection rather than specific functionality.

It is very similar, but one of the key differences from Kuri, I think, is that Kuri started with a Kobuki base, and then it’s wrapped into a cute shell, and they added sounds. So Kuri started with utility in mind—navigation is an important part of Kuri, so they started with that challenge. For Kiki, we started with the eyes. The entire thing started with the character itself.

How will you be able to convince your customers to spend $800 on a robot that you’ve described as “useless” in some ways?

Because it’s useless, it’s actually easier to convince people, because it provides you with an emotional connection. I think Kiki is not a utility-driven product, so the adoption cycle is different. For a functional product, it’s very easy to pick up, because you can justify it by saying “I’m going to pay this much and then my life can become this much more efficient.” But it’s also very easy to be replaced and forgotten. For an emotional-driven product, it’s slower to pick up, but once people actually pick it up, they’re going to be hooked—they get be connected with it, and they’re willing to invest more into taking care of the robot so it will grow up to be smarter.

Maintaining value over time has been another challenge for social home robots. How will you make sure that people don’t get bored with Kiki after a few weeks?

Of course Kiki has limits in what it can do. We can combine the eyes, the facial expression, the motors, and lights and sounds, but is it going to be constantly entertaining? So we think of this as, imagine if a human is actually puppeteering Kiki—can Kiki stay interesting if a human is puppeteering it and interacting with the owner? So I think what makes a robot interesting is not just in the physical expressions, but the part in between that and the robot conveying its intentions and emotions.

For example, if you come into the room and then Kiki decides it will turn the other direction, ignore you, and then you feel like, huh, why did the robot do that to me? Did I do something wrong? And then maybe you will come up to it and you will try to figure out why it did that. So, even though Kiki can only express in four different dimensions, it can still make things very interesting, and then when its strategies change, it makes it feel like a new experience.

There’s also an explore and exploit process going on. Kiki wants to make you smile, and it will try different things. It could try to chase its tail, and if you smile, Kiki learns that this works and will exploit it. But maybe after doing it three times, you no longer find it funny, because you’re bored of it, and then Kiki will observe your reactions and be motivated to explore a new strategy.

Photo: Zoetic

Kiki’s creators are hoping that, with an emotionally engaging robot, it will be easier for people to get attached to it and willing to spend time taking care of it.

A particular risk with crowdfunding a robot like this is setting expectations unreasonably high. The emphasis on personality and emotional engagement with Kiki seems like it may be very difficult for the robot to live up to in practice.

I think we invested more than most robotics companies into really building out Kiki’s personality, because that is the single most important thing to us. For Jibo a lot of the focus was in the assistant, and for Kuri, it’s more in the movement. For Kiki, it’s very much in the personality.

I feel like when most people talk about personality, they’re mainly talking about expression. With Kiki, it’s not just in the expression itself, not just in the voice or the eyes or the output layer, it’s in the layer in between—when Kiki receives input, how will it make decisions about what to do? We actually don’t think the personality of Kiki is categorizable, which is why I feel like Kiki has a deeper implementation of how personalities should work. And you’re right, Kiki doesn’t really understand why you’re feeling a certain way, it just reads your facial expressions. It’s maybe not your best friend, but maybe closer to your little guinea pig robot.

Photo: Zoetic

The team behind Kiki paid particular attention to its eyes, and designed the robot to always face the person that it is interacting with.

Is that where you’d put Kiki on the scale of human to pet?

Kiki is definitely not human, we want to keep it very far away from human. And it’s also not a dog or cat. When we were designing Kiki, we took inspiration from mammals because humans are deeply connected to mammals since we’re mammals ourselves. And specifically we’re connected to predator animals. With prey animals, their eyes are usually on the sides of their heads, because they need to see different angles. A predator animal needs to hunt, they need to focus. Cats and dogs are predator animals. So with Kiki, that’s why we made sure the eyes are on one side of the face and the head can actuate independently from the body and the body can turn so it’s always facing the person that it’s paying attention to.

I feel like Kiki is probably does more than a plant. It does more than a fish, because a fish doesn’t look you in the eyes. It’s not as smart as a cat or a dog, so I would just put it in this guinea pig kind of category.

What have you found so far when running user studies with Kiki?

When we were first designing Kiki we went through a whole series of prototypes. One of the earlier prototypes of Kiki looked like a CRT, like a very old monitor, and when we were testing that with people they didn’t even want to touch it. Kiki’s design inspiration actually came from an airplane, with a very angular, futuristic look, but based on user feedback we made it more round and more friendly to the touch. The lights were another feature request from the users, which adds another layer of expressivity to Kiki, and they wanted to see multiple Kikis working together with different personalities. Users also wanted different looks for Kiki, to make it look like a deer or a unicorn, for example, and we actually did take that into consideration because it doesn’t look like any particular mammal. In the future, you’ll be able to have different ears to make it look like completely different animals.

There has been a lot of user feedback that we didn’t implement—I believe we should observe the users reactions and feedback but not listen to their advice. The users shouldn’t be our product designers, because if you test Kiki with 10 users, eight of them will tell you they want Alexa in it. But we’re never going to add Alexa integration to Kiki because that’s not what it’s meant to do.

While it’s far too early to tell whether Kiki will be a long-term success, the Kickstarter campaign is currently over 95 percent funded with 8 days to go, and 34 robots are still available for a May 2020 delivery.

[ Kickstarter ] Continue reading

Posted in Human Robots

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots

#435687 Humanoid Robots Teach Coping Skills to ...

Photo: Rob Felt

IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.

THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.

Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.

In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.

“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.

It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.

Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.

The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.

In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.

FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.

“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.

“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”

DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.

“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”

Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.

“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”

ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.

“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”

Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.

Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.

“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.

Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.

ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”

She kept the membership as a grad student because of the discounted rates members receive on conferences.

Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”

Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.

“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading

Posted in Human Robots

#435658 Video Friday: A Two-Armed Robot That ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
Let us know if you have suggestions for next week, and enjoy today’s videos.

I’m sure you’ve seen this video already because you read this blog every day, but if you somehow missed it because you were skiing across Antarctica (the only valid excuse we’re accepting today), here’s our video introducing HMI’s Aquanaut transforming robot submarine.

And after you recover from all that frostbite, make sure and read our in-depth feature article here.

[ Aquanaut ]

Last week we complained about not having seen a ballbot with a manipulator, so Roberto from CMU shared a new video of their ballbot, featuring a pair of 7-DoF arms.

We should learn more at Humanoids 2019.

[ CMU ]

Thanks Roberto!

The FAA is making it easier for recreational drone pilots to get near-realtime approval to fly in lightly controlled airspace.

[ LAANC ]

Self-reconfigurable modular robots are usually composed of multiple modules with uniform docking interfaces that can be transformed into different configurations by themselves. The reconfiguration planning problem is finding what sequence of reconfiguration actions are required for one arrangement of modules to transform into another. We present a novel reconfiguration planning algorithm for modular robots. The algorithm compares the initial configuration with the goal configuration efficiently. The reconfiguration actions can be executed in a distributed manner so that each module can efficiently finish its reconfiguration task which results in a global reconfiguration for the system. In the end, the algorithm is demonstrated on real modular robots and some example reconfiguration tasks are provided.

[ CKbot ]

A nice design of a gripper that uses a passive thumb of sorts to pick up flat objects from flat surfaces.

[ Paper ] via [ Laval University ]

I like this video of a palletizing robot from Kawasaki because in the background you can see a human doing the exact same job and obviously not enjoying it.

[ Kawasaki ]

This robot cleans and “brings joy and laughter.” What else do we need?

I do appreciate that all the robots are named Leo, and that they’re also all female.

[ LionsBot ]

This is less of a dishwashing robot and more of a dishsorting robot, but we’ll forgive it because it doesn’t drop a single dish.

[ TechMagic ]

Thanks Ryosuke!

A slight warning here that the robot in the following video (which costs something like $180,000) appears “naked” in some scenes, none of which are strictly objectionable, we hope.

Beautifully slim and delicate motion life-size motion figures are ideal avatars for expressing emotions to customers in various arts, content and businesses. We can provide a system that integrates not only motion figures but all moving devices.

[ Speecys ]

The best way to operate a Husky with a pair of manipulators on it is to become the robot.

[ UT Austin ]

The FlyJacket drone control system from EPFL has been upgraded so that it can yank you around a little bit.

In several fields of human-machine interaction, haptic guidance has proven to be an effective training tool for enhancing user performance. This work presents the results of psychophysical and motor learning studies that were carried out with human participant to assess the effect of cable-driven haptic guidance for a task involving aerial robotic teleoperation. The guidance system was integrated into an exosuit, called the FlyJacket, that was developed to control drones with torso movements. Results for the Just Noticeable Difference (JND) and from the Stevens Power Law suggest that the perception of force on the users’ torso scales linearly with the amplitude of the force exerted through the cables and the perceived force is close to the magnitude of the stimulus. Motor learning studies reveal that this form of haptic guidance improves user performance in training, but this improvement is not retained when participants are evaluated without guidance.

[ EPFL ]

The SAND Challenge is an opportunity for small businesses to compete in an autonomous unmanned aerial vehicle (UAV) competition to help NASA address safety-critical risks associated with flying UAVs in the national airspace. Set in a post-natural disaster scenario, SAND will push the envelope of aviation.

[ NASA ]

Legged robots have the potential to traverse diverse and rugged terrain. To find a safe and efficient navigation path and to carefully select individual footholds, it is useful to predict properties of the terrain ahead of the robot. In this work, we propose a method to collect data from robot-terrain interaction and associate it to images, to then train a neural network to predict terrain properties from images.

[ RSL ]

Misty wants to be your new receptionist.

[ Misty Robotics ]

For years, we’ve been pointing out that while new Roombas have lots of great features, older Roombas still do a totally decent job of cleaning your floors. This video is a performance comparison between the newest Roomba (the S9+) and the original 2002 Roomba (!), and the results will surprise you. Or maybe they won’t.

[ Vacuum Wars ]

Lex Fridman from MIT interviews Chris Urmson, who was involved in some of the earliest autonomous vehicle projects, Google’s original self-driving car among them, and is currently CEO of Aurora Innovation.

Chris Urmson was the CTO of the Google Self-Driving Car team, a key engineer and leader behind the Carnegie Mellon autonomous vehicle entries in the DARPA grand challenges and the winner of the DARPA urban challenge. Today he is the CEO of Aurora Innovation, an autonomous vehicle software company he started with Sterling Anderson, who was the former director of Tesla Autopilot, and Drew Bagnell, Uber’s former autonomy and perception lead.

[ AI Podcast ]

In this week’s episode of Robots in Depth, Per speaks with Lael Odhner from RightHand Robotics.

Lael Odhner is a co-founder of RightHand Robotics, that is developing a gripper based on the combination of control and soft, compliant parts to get better grasping of objects. Their work focuses on grasping and manipulating everyday human objects in everyday environments.This mimics how human hands combine control and flexibility to grasp objects with great dexterity.

The combination of control and compliance makes the RightHand robotics gripper very light-weight and affordable. The compliance makes it easier to grasp objects of unknown shape and differs from the way industrial robots usually grip. The compliance also helps in a more unstructured environment where contact with the object and its surroundings cannot be exactly predicted.

[ RightHand Robotics ] via [ Robots in Depth ] Continue reading

Posted in Human Robots