Tag Archives: embedded
#433748 Could Tech Make Government As We Know It ...
Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.
At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.
In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.
Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.
In this article, we will cover three key trends:
Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency
Let’s dive in.
Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.
Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.
Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.
With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.
Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.
Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.
But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.
After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.
The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.
We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.
And what better to accelerate digital governance than AI?
Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.
Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.
As AI infuses government services, emerging applications have caught my eye:
Smart Borders and Checkpoints
With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.
Policing and Security
Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.
Smart Courts
AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?
Enter the blockchain.
Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.
As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.
First, blockchain will be a boon for regulatory compliance.
As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.
Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.
Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.
But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.
Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.
Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.
Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.
Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.
But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.
Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.
One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.
In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?
The possibilities are endless, and only we can shape them.
Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: ArtisticPhoto / Shutterstock.com Continue reading →
#433668 A Decade of Commercial Space ...
In many industries, a decade is barely enough time to cause dramatic change unless something disruptive comes along—a new technology, business model, or service design. The space industry has recently been enjoying all three.
But 10 years ago, none of those innovations were guaranteed. In fact, on Sept. 28, 2008, an entire company watched and hoped as their flagship product attempted a final launch after three failures. With cash running low, this was the last shot. Over 21,000 kilograms of kerosene and liquid oxygen ignited and powered two booster stages off the launchpad.
This first official picture of the Soviet satellite Sputnik I was issued in Moscow Oct. 9, 1957. The satellite measured 1 foot, 11 inches and weighed 184 pounds. The Space Age began as the Soviet Union launched Sputnik, the first man-made satellite, into orbit, on Oct. 4, 1957.AP Photo/TASS
When that Falcon 1 rocket successfully reached orbit and the company secured a subsequent contract with NASA, SpaceX had survived its ‘startup dip’. That milestone, the first privately developed liquid-fueled rocket to reach orbit, ignited a new space industry that is changing our world, on this planet and beyond. What has happened in the intervening years, and what does it mean going forward?
While scientists are busy developing new technologies that address the countless technical problems of space, there is another segment of researchers, including myself, studying the business angle and the operations issues facing this new industry. In a recent paper, my colleague Christopher Tang and I investigate the questions firms need to answer in order to create a sustainable space industry and make it possible for humans to establish extraterrestrial bases, mine asteroids and extend space travel—all while governments play an increasingly smaller role in funding space enterprises. We believe these business solutions may hold the less-glamorous key to unlocking the galaxy.
The New Global Space Industry
When the Soviet Union launched their Sputnik program, putting a satellite in orbit in 1957, they kicked off a race to space fueled by international competition and Cold War fears. The Soviet Union and the United States played the primary roles, stringing together a series of “firsts” for the record books. The first chapter of the space race culminated with Neil Armstrong and Buzz Aldrin’s historic Apollo 11 moon landing which required massive public investment, on the order of US$25.4 billion, almost $200 billion in today’s dollars.
Competition characterized this early portion of space history. Eventually, that evolved into collaboration, with the International Space Station being a stellar example, as governments worked toward shared goals. Now, we’ve entered a new phase—openness—with private, commercial companies leading the way.
The industry for spacecraft and satellite launches is becoming more commercialized, due, in part, to shrinking government budgets. According to a report from the investment firm Space Angels, a record 120 venture capital firms invested over $3.9 billion in private space enterprises last year. The space industry is also becoming global, no longer dominated by the Cold War rivals, the United States and USSR.
In 2018 to date, there have been 72 orbital launches, an average of two per week, from launch pads in China, Russia, India, Japan, French Guinea, New Zealand, and the US.
The uptick in orbital launches of actual rockets as well as spacecraft launches, which includes satellites and probes launched from space, coincides with this openness over the past decade.
More governments, firms and even amateurs engage in various spacecraft launches than ever before. With more entities involved, innovation has flourished. As Roberson notes in Digital Trends, “Private, commercial spaceflight. Even lunar exploration, mining, and colonization—it’s suddenly all on the table, making the race for space today more vital than it has felt in years.”
Worldwide launches into space. Orbital launches include manned and unmanned spaceships launched into orbital flight from Earth. Spacecraft launches include all vehicles such as spaceships, satellites and probes launched from Earth or space. Wooten, J. and C. Tang (2018) Operations in space, Decision Sciences; Space Launch Report (Kyle 2017); Spacecraft Encyclopedia (Lafleur 2017), CC BY-ND
One can see this vitality plainly in the news. On Sept. 21, Japan announced that two of its unmanned rovers, dubbed Minerva-II-1, had landed on a small, distant asteroid. For perspective, the scale of this landing is similar to hitting a 6-centimeter target from 20,000 kilometers away. And earlier this year, people around the world watched in awe as SpaceX’s Falcon Heavy rocket successfully launched and, more impressively, returned its two boosters to a landing pad in a synchronized ballet of epic proportions.
Challenges and Opportunities
Amidst the growth of capital, firms, and knowledge, both researchers and practitioners must figure out how entities should manage their daily operations, organize their supply chain, and develop sustainable operations in space. This is complicated by the hurdles space poses: distance, gravity, inhospitable environments, and information scarcity.
One of the greatest challenges involves actually getting the things people want in space, into space. Manufacturing everything on Earth and then launching it with rockets is expensive and restrictive. A company called Made In Space is taking a different approach by maintaining an additive manufacturing facility on the International Space Station and 3D printing right in space. Tools, spare parts, and medical devices for the crew can all be created on demand. The benefits include more flexibility and better inventory management on the space station. In addition, certain products can be produced better in space than on Earth, such as pure optical fiber.
How should companies determine the value of manufacturing in space? Where should capacity be built and how should it be scaled up? The figure below breaks up the origin and destination of goods between Earth and space and arranges products into quadrants. Humans have mastered the lower left quadrant, made on Earth—for use on Earth. Moving clockwise from there, each quadrant introduces new challenges, for which we have less and less expertise.
A framework of Earth-space operations. Wooten, J. and C. Tang (2018) Operations in Space, Decision Sciences, CC BY-ND
I first became interested in this particular problem as I listened to a panel of robotics experts discuss building a colony on Mars (in our third quadrant). You can’t build the structures on Earth and easily send them to Mars, so you must manufacture there. But putting human builders in that extreme environment is equally problematic. Essentially, an entirely new mode of production using robots and automation in an advance envoy may be required.
Resources in Space
You might wonder where one gets the materials for manufacturing in space, but there is actually an abundance of resources: Metals for manufacturing can be found within asteroids, water for rocket fuel is frozen as ice on planets and moons, and rare elements like helium-3 for energy are embedded in the crust of the moon. If we brought that particular isotope back to Earth, we could eliminate our dependence on fossil fuels.
As demonstrated by the recent Minerva-II-1 asteroid landing, people are acquiring the technical know-how to locate and navigate to these materials. But extraction and transport are open questions.
How do these cases change the economics in the space industry? Already, companies like Planetary Resources, Moon Express, Deep Space Industries, and Asterank are organizing to address these opportunities. And scholars are beginning to outline how to navigate questions of property rights, exploitation and partnerships.
Threats From Space Junk
A computer-generated image of objects in Earth orbit that are currently being tracked. Approximately 95 percent of the objects in this illustration are orbital debris – not functional satellites. The dots represent the current location of each item. The orbital debris dots are scaled according to the image size of the graphic to optimize their visibility and are not scaled to Earth. NASA
The movie “Gravity” opens with a Russian satellite exploding, which sets off a chain reaction of destruction thanks to debris hitting a space shuttle, the Hubble telescope, and part of the International Space Station. The sequence, while not perfectly plausible as written, is a very real phenomenon. In fact, in 2013, a Russian satellite disintegrated when it was hit with fragments from a Chinese satellite that exploded in 2007. Known as the Kessler effect, the danger from the 500,000-plus pieces of space debris has already gotten some attention in public policy circles. How should one prevent, reduce or mitigate this risk? Quantifying the environmental impact of the space industry and addressing sustainable operations is still to come.
NASA scientist Mark Matney is seen through a fist-sized hole in a 3-inch thick piece of aluminum at Johnson Space Center’s orbital debris program lab. The hole was created by a thumb-size piece of material hitting the metal at very high speed simulating possible damage from space junk. AP Photo/Pat Sullivan
What’s Next?
It’s true that space is becoming just another place to do business. There are companies that will handle the logistics of getting your destined-for-space module on board a rocket; there are companies that will fly those rockets to the International Space Station; and there are others that can make a replacement part once there.
What comes next? In one sense, it’s anybody’s guess, but all signs point to this new industry forging ahead. A new breakthrough could alter the speed, but the course seems set: exploring farther away from home, whether that’s the moon, asteroids, or Mars. It’s hard to believe that 10 years ago, SpaceX launches were yet to be successful. Today, a vibrant private sector consists of scores of companies working on everything from commercial spacecraft and rocket propulsion to space mining and food production. The next step is working to solidify the business practices and mature the industry.
Standing in a large hall at the University of Pittsburgh as part of the White House Frontiers Conference, I see the future. Wrapped around my head are state-of-the-art virtual reality goggles. I’m looking at the surface of Mars. Every detail is immediate and crisp. This is not just a video game or an aimless exercise. The scientific community has poured resources into such efforts because exploration is preceded by information. And who knows, maybe 10 years from now, someone will be standing on the actual surface of Mars.
Image Credit: SpaceX
Joel Wooten, Assistant Professor of Management Science, University of South Carolina
This article is republished from The Conversation under a Creative Commons license. Read the original article. Continue reading →
#433400 A Model for the Future of Education, and ...
As kids worldwide head back to school, I’d like to share my thoughts on the future of education.
Bottom line, how we educate our kids needs to radically change given the massive potential of exponential tech (e.g. artificial intelligence and virtual reality).
Without question, the number one driver for education is inspiration. As such, if you have a kid age 8–18, you’ll want to get your hands on an incredibly inspirational novel written by my dear friend Ray Kurzweil called Danielle: Chronicles of a Superheroine.
Danielle offers boys and girls a role model of a young woman who uses smart technologies and super-intelligence to partner with her friends to solve some of the world’s greatest challenges. It’s perfect to inspire anyone to pursue their moonshot.
Without further ado, let’s dive into the future of educating kids, and a summary of my white paper thoughts….
Just last year, edtech (education technology) investments surpassed a record high of 9.5 billion USD—up 30 percent from the year before.
Already valued at over half a billion USD, the AI in education market is set to surpass 6 billion USD by 2024.
And we’re now seeing countless new players enter the classroom, from a Soul Machines AI teacher specializing in energy use and sustainability to smart “lab schools” with personalized curricula.
As my two boys enter 1st grade, I continue asking myself, given the fact that most elementary schools haven’t changed in many decades (perhaps a century), what do I want my kids to learn? How do I think about elementary school during an exponential era?
This post covers five subjects related to elementary school education:
Five Issues with Today’s Elementary Schools
Five Guiding Principles for Future Education
An Elementary School Curriculum for the Future
Exponential Technologies in our Classroom
Mindsets for the 21st Century
Excuse the length of this post, but if you have kids, the details might be meaningful. If you don’t, then next week’s post will return to normal length and another fun subject.
Also, if you’d like to see my detailed education “white paper,” you can view or download it here.
Let’s dive in…
Five Issues With Today’s Elementary Schools
There are probably lots of issues with today’s traditional elementary schools, but I’ll just choose a few that bother me most.
Grading: In the traditional education system, you start at an “A,” and every time you get something wrong, your score gets lower and lower. At best it’s demotivating, and at worst it has nothing to do with the world you occupy as an adult. In the gaming world (e.g. Angry Birds), it’s just the opposite. You start with zero and every time you come up with something right, your score gets higher and higher.
Sage on the Stage: Most classrooms have a teacher up in front of class lecturing to a classroom of students, half of whom are bored and half of whom are lost. The one-teacher-fits-all model comes from an era of scarcity where great teachers and schools were rare.
Relevance: When I think back to elementary and secondary school, I realize how much of what I learned was never actually useful later in life, and how many of my critical lessons for success I had to pick up on my own (I don’t know about you, but I haven’t ever actually had to factor a polynomial in my adult life).
Imagination, Coloring inside the Lines: Probably of greatest concern to me is the factory-worker, industrial-era origin of today’s schools. Programs are so structured with rote memorization that it squashes the originality from most children. I’m reminded that “the day before something is truly a breakthrough, it’s a crazy idea.” Where do we pursue crazy ideas in our schools? Where do we foster imagination?
Boring: If learning in school is a chore, boring, or emotionless, then the most important driver of human learning, passion, is disengaged. Having our children memorize facts and figures, sit passively in class, and take mundane standardized tests completely defeats the purpose.
An average of 7,200 students drop out of high school each day, totaling 1.3 million each year. This means only 69 percent of students who start high school finish four years later. And over 50 percent of these high school dropouts name boredom as the number one reason they left.
Five Guiding Principles for Future Education
I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires.
From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want.
In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?
For me it’s about passion, curiosity, imagination, critical thinking, and grit.
Passion: You’d be amazed at how many people don’t have a mission in life… A calling… something to jolt them out of bed every morning. The most valuable resource for humanity is the persistent and passionate human mind, so creating a future of passionate kids is so very important. For my 7-year-old boys, I want to support them in finding their passion or purpose… something that is uniquely theirs. In the same way that the Apollo program and Star Trek drove my early love for all things space, and that passion drove me to learn and do.
Curiosity: Curiosity is something innate in kids, yet something lost by most adults during the course of their life. Why? In a world of Google, robots, and AI, raising a kid that is constantly asking questions and running “what if” experiments can be extremely valuable. In an age of machine learning, massive data, and a trillion sensors, it will be the quality of your questions that will be most important.
Imagination: Entrepreneurs and visionaries imagine the world (and the future) they want to live in, and then they create it. Kids happen to be some of the most imaginative humans around… it’s critical that they know how important and liberating imagination can be.
Critical Thinking: In a world flooded with often-conflicting ideas, baseless claims, misleading headlines, negative news, and misinformation, learning the skill of critical thinking helps find the signal in the noise. This principle is perhaps the most difficult to teach kids.
Grit/Persistence: Grit is defined as “passion and perseverance in pursuit of long-term goals,” and it has recently been widely acknowledged as one of the most important predictors of and contributors to success.
Teaching your kids not to give up, to keep trying, and to keep trying new ideas for something that they are truly passionate about achieving is extremely critical. Much of my personal success has come from such stubbornness. I joke that both XPRIZE and the Zero Gravity Corporation were “overnight successes after 10 years of hard work.”
So given those five basic principles, what would an elementary school curriculum look like? Let’s take a look…
An Elementary School Curriculum for the Future
Over the last 30 years, I’ve had the pleasure of starting two universities, International Space University (1987) and Singularity University (2007). My favorite part of co-founding both institutions was designing and implementing the curriculum. Along those lines, the following is my first shot at the type of curriculum I’d love my own boys to be learning.
I’d love your thoughts, I’ll be looking for them here: https://www.surveymonkey.com/r/DDRWZ8R
For the purpose of illustration, I’ll speak about ‘courses’ or ‘modules,’ but in reality these are just elements that would ultimately be woven together throughout the course of K-6 education.
Module 1: Storytelling/Communications
When I think about the skill that has served me best in life, it’s been my ability to present my ideas in the most compelling fashion possible, to get others onboard, and support birth and growth in an innovative direction. In my adult life, as an entrepreneur and a CEO, it’s been my ability to communicate clearly and tell compelling stories that has allowed me to create the future. I don’t think this lesson can start too early in life. So imagine a module, year after year, where our kids learn the art and practice of formulating and pitching their ideas. The best of oration and storytelling. Perhaps children in this class would watch TED presentations, or maybe they’d put together their own TEDx for kids. Ultimately, it’s about practice and getting comfortable with putting yourself and your ideas out there and overcoming any fears of public speaking.
Module 2: Passions
A modern school should help our children find and explore their passion(s). Passion is the greatest gift of self-discovery. It is a source of interest and excitement, and is unique to each child.
The key to finding passion is exposure. Allowing kids to experience as many adventures, careers, and passionate adults as possible. Historically, this was limited by the reality of geography and cost, implemented by having local moms and dads presenting in class about their careers. “Hi, I’m Alan, Billy’s dad, and I’m an accountant. Accountants are people who…”
But in a world of YouTube and virtual reality, the ability for our children to explore 500 different possible careers or passions during their K-6 education becomes not only possible but compelling. I imagine a module where children share their newest passion each month, sharing videos (or VR experiences) and explaining what they love and what they’ve learned.
Module 3: Curiosity & Experimentation
Einstein famously said, “I have no special talent. I am only passionately curious.” Curiosity is innate in children, and many times lost later in life. Arguably, it can be said that curiosity is responsible for all major scientific and technological advances; it’s the desire of an individual to know the truth.
Coupled with curiosity is the process of experimentation and discovery. The process of asking questions, creating and testing a hypothesis, and repeated experimentation until the truth is found. As I’ve studied the most successful entrepreneurs and entrepreneurial companies, from Google and Amazon to Uber, their success is significantly due to their relentless use of experimentation to define their products and services.
Here I imagine a module which instills in children the importance of curiosity and gives them permission to say, “I don’t know, let’s find out.”
Further, a monthly module that teaches children how to design and execute valid and meaningful experiments. Imagine children who learn the skill of asking a question, proposing a hypothesis, designing an experiment, gathering the data, and then reaching a conclusion.
Module 4: Persistence/Grit
Doing anything big, bold, and significant in life is hard work. You can’t just give up when the going gets rough. The mindset of persistence, of grit, is a learned behavior I believe can be taught at an early age, especially when it’s tied to pursuing a child’s passion.
I imagine a curriculum that, each week, studies the career of a great entrepreneur and highlights their story of persistence. It would highlight the individuals and companies that stuck with it, iterated, and ultimately succeeded.
Further, I imagine a module that combines persistence and experimentation in gameplay, such as that found in Dean Kamen’s FIRST LEGO league, where 4th graders (and up) research a real-world problem such as food safety, recycling, energy, and so on, and are challenged to develop a solution. They also must design, build, and program a robot using LEGO MINDSTORMS®, then compete on a tabletop playing field.
Module 5: Technology Exposure
In a world of rapidly accelerating technology, understanding how technologies work, what they do, and their potential for benefiting society is, in my humble opinion, critical to a child’s future. Technology and coding (more on this below) are the new “lingua franca” of tomorrow.
In this module, I imagine teaching (age appropriate) kids through play and demonstration. Giving them an overview of exponential technologies such as computation, sensors, networks, artificial intelligence, digital manufacturing, genetic engineering, augmented/virtual reality, and robotics, to name a few. This module is not about making a child an expert in any technology, it’s more about giving them the language of these new tools, and conceptually an overview of how they might use such a technology in the future. The goal here is to get them excited, give them demonstrations that make the concepts stick, and then to let their imaginations run.
Module 6: Empathy
Empathy, defined as “the ability to understand and share the feelings of another,” has been recognized as one of the most critical skills for our children today. And while there has been much written, and great practices for instilling this at home and in school, today’s new tools accelerate this.
Virtual reality isn’t just about video games anymore. Artists, activists, and journalists now see the technology’s potential to be an empathy engine, one that can shine spotlights on everything from the Ebola epidemic to what it’s like to live in Gaza. And Jeremy Bailenson has been at the vanguard of investigating VR’s power for good.
For more than a decade, Bailenson’s lab at Stanford has been studying how VR can make us better people. Through the power of VR, volunteers at the lab have felt what it is like to be Superman (to see if it makes them more helpful), a cow (to reduce meat consumption), and even a coral (to learn about ocean acidification).
Silly as they might seem, these sorts of VR scenarios could be more effective than the traditional public service ad at making people behave. Afterwards, they waste less paper. They save more money for retirement. They’re nicer to the people around them. And this could have consequences in terms of how we teach and train everyone from cliquey teenagers to high court judges.
Module 7: Ethics/Moral Dilemmas
Related to empathy, and equally important, is the goal of infusing kids with a moral compass. Over a year ago, I toured a special school created by Elon Musk (the Ad Astra school) for his five boys (age 9 to 14). One element that is persistent in that small school of under 40 kids is the conversation about ethics and morals, a conversation manifested by debating real-world scenarios that our kids may one day face.
Here’s an example of the sort of gameplay/roleplay that I heard about at Ad Astra, that might be implemented in a module on morals and ethics. Imagine a small town on a lake, in which the majority of the town is employed by a single factory. But that factory has been polluting the lake and killing all the life. What do you do? It’s posed that shutting down the factory would mean that everyone loses their jobs. On the other hand, keeping the factory open means the lake is destroyed and the lake dies. This kind of regular and routine conversation/gameplay allows the children to see the world in a critically important fashion.
Module 8: The 3R Basics (Reading, wRiting & aRithmetic)
There’s no question that young children entering kindergarten need the basics of reading, writing, and math. The only question is what’s the best way for them to get it? We all grew up in the classic mode of a teacher at the chalkboard, books, and homework at night. But I would argue that such teaching approaches are long outdated, now replaced with apps, gameplay, and the concept of the flip classroom.
Pioneered by high school teachers Jonathan Bergman and Aaron Sams in 2007, the flipped classroom reverses the sequence of events from that of the traditional classroom.
Students view lecture materials, usually in the form of video lectures, as homework prior to coming to class. In-class time is reserved for activities such as interactive discussions or collaborative work, all performed under the guidance of the teacher.
The benefits are clear:
Students can consume lectures at their own pace, viewing the video again and again until they get the concept, or fast-forwarding if the information is obvious.
The teacher is present while students apply new knowledge. Doing the homework into class time gives teachers insight into which concepts, if any, that their students are struggling with and helps them adjust the class accordingly.
The flipped classroom produces tangible results: 71 percent of teachers who flipped their classes noticed improved grades, and 80 percent reported improved student attitudes as a result.
Module 9: Creative Expression & Improvisation
Every single one of us is creative. It’s human nature to be creative… the thing is that we each might have different ways of expressing our creativity.
We must encourage kids to discover and to develop their creative outlets early. In this module, imagine showing kids the many different ways creativity is expressed, from art to engineering to music to math, and then guiding them as they choose the area (or areas) they are most interested in. Critically, teachers (or parents) can then develop unique lessons for each child based on their interests, thanks to open education resources like YouTube and the Khan Academy. If my child is interested in painting and robots, a teacher or AI could scour the web and put together a custom lesson set from videos/articles where the best painters and roboticists in the world share their skills.
Adapting to change is critical for success, especially in our constantly changing world today. Improvisation is a skill that can be learned, and we need to be teaching it early.
In most collegiate “improv” classes, the core of great improvisation is the “Yes, and…” mindset. When acting out a scene, one actor might introduce a new character or idea, completely changing the context of the scene. It’s critical that the other actors in the scene say “Yes, and…” accept the new reality, then add something new of their own.
Imagine playing similar role-play games in elementary schools, where a teacher gives the students a scene/context and constantly changes variables, forcing them to adapt and play.
Module 10: Coding
Computer science opens more doors for students than any other discipline in today’s world. Learning even the basics will help students in virtually any career, from architecture to zoology.
Coding is an important tool for computer science, in the way that arithmetic is a tool for doing mathematics and words are a tool for English. Coding creates software, but computer science is a broad field encompassing deep concepts that go well beyond coding.
Every 21st century student should also have a chance to learn about algorithms, how to make an app, or how the internet works. Computational thinking allows preschoolers to grasp concepts like algorithms, recursion and heuristics. Even if they don’t understand the terms, they’ll learn the basic concepts.
There are more than 500,000 open jobs in computing right now, representing the number one source of new wages in the US, and these jobs are projected to grow at twice the rate of all other jobs.
Coding is fun! Beyond the practical reasons for learning how to code, there’s the fact that creating a game or animation can be really fun for kids.
Module 11: Entrepreneurship & Sales
At its core, entrepreneurship is about identifying a problem (an opportunity), developing a vision on how to solve it, and working with a team to turn that vision into reality. I mentioned Elon’s school, Ad Astra: here, again, entrepreneurship is a core discipline where students create and actually sell products and services to each other and the school community.
You could recreate this basic exercise with a group of kids in lots of fun ways to teach them the basic lessons of entrepreneurship.
Related to entrepreneurship is sales. In my opinion, we need to be teaching sales to every child at an early age. Being able to “sell” an idea (again related to storytelling) has been a critical skill in my career, and it is a competency that many people simply never learned.
The lemonade stand has been a classic, though somewhat meager, lesson in sales from past generations, where a child sits on a street corner and tries to sell homemade lemonade for $0.50 to people passing by. I’d suggest we step the game up and take a more active approach in gamifying sales, and maybe having the classroom create a Kickstarter, Indiegogo or GoFundMe campaign. The experience of creating a product or service and successfully selling it will create an indelible memory and give students the tools to change the world.
Module 12: Language
A little over a year ago, I spent a week in China meeting with parents whose focus on kids’ education is extraordinary. One of the areas I found fascinating is how some of the most advanced parents are teaching their kids new languages: through games. On the tablet, the kids are allowed to play games, but only in French. A child’s desire to win fully engages them and drives their learning rapidly.
Beyond games, there’s virtual reality. We know that full immersion is what it takes to become fluent (at least later in life). A semester abroad in France or Italy, and you’ve got a great handle on the language and the culture. But what about for an eight-year-old?
Imagine a module where for an hour each day, the children spend their time walking around Italy in a VR world, hanging out with AI-driven game characters who teach them, engage them, and share the culture and the language in the most personalized and compelling fashion possible.
Exponential Technologies for Our Classrooms
If you’ve attended Abundance 360 or Singularity University, or followed my blogs, you’ll probably agree with me that the way our children will learn is going to fundamentally transform over the next decade.
Here’s an overview of the top five technologies that will reshape the future of education:
Tech 1: Virtual Reality (VR) can make learning truly immersive. Research has shown that we remember 20 percent of what we hear, 30 percent of what we see, and up to 90 percent of what we do or simulate. Virtual reality yields the latter scenario impeccably. VR enables students to simulate flying through the bloodstream while learning about different cells they encounter, or travel to Mars to inspect the surface for life.
To make this a reality, Google Cardboard just launched its Pioneer Expeditions product. Under this program, thousands of schools around the world have gotten a kit containing everything a teacher needs to take his or her class on a virtual trip. While data on VR use in K-12 schools and colleges have yet to be gathered, the steady growth of the market is reflected in the surge of companies (including zSpace, Alchemy VR and Immersive VR Education) solely dedicated to providing schools with packaged education curriculum and content.
Add to VR a related technology called augmented reality (AR), and experiential education really comes alive. Imagine wearing an AR headset that is able to superimpose educational lessons on top of real-world experiences. Interested in botany? As you walk through a garden, the AR headset superimposes the name and details of every plant you see.
Tech 2: 3D Printing is allowing students to bring their ideas to life. Never mind the computer on every desktop (or a tablet for every student), that’s a given. In the near future, teachers and students will want or have a 3D printer on the desk to help them learn core science, technology, engineering and mathematics (STEM) principles. Bre Pettis, of MakerBot Industries, in a grand but practical vision, sees a 3D printer on every school desk in America. “Imagine if you had a 3D printer instead of a LEGO set when you were a kid; what would life be like now?” asks Mr. Pettis. You could print your own mini-figures, your own blocks, and you could iterate on new designs as quickly as your imagination would allow. MakerBots are now in over 5,000 K-12 schools across the US.
Taking this one step further, you could imagine having a 3D file for most entries in Wikipedia, allowing you to print out and study an object you can only read about or visualize in VR.
Tech 3: Sensors & Networks. An explosion of sensors and networks are going to connect everyone at gigabit speeds, making access to rich video available at all times. At the same time, sensors continue to miniaturize and reduce in power, becoming embedded in everything. One benefit will be the connection of sensor data with machine learning and AI (below), such that knowledge of a child’s attention drifting, or confusion, can be easily measured and communicated. The result would be a representation of the information through an alternate modality or at a different speed.
Tech 4: Machine Learning is making learning adaptive and personalized. No two students are identical—they have different modes of learning (by reading, seeing, hearing, doing), come from different educational backgrounds, and have different intellectual capabilities and attention spans. Advances in machine learning and the surging adaptive learning movement are seeking to solve this problem. Companies like Knewton and Dreambox have over 15 million students on their respective adaptive learning platforms. Soon, every education application will be adaptive, learning how to personalize the lesson for a specific student. There will be adaptive quizzing apps, flashcard apps, textbook apps, simulation apps and many more.
Tech 5: Artificial Intelligence or “An AI Teaching Companion.” Neil Stephenson’s book The Diamond Age presents a fascinating piece of educational technology called “A Young Lady’s Illustrated Primer.”
As described by Beat Schwendimann, “The primer is an interactive book that can answer a learner’s questions (spoken in natural language), teach through allegories that incorporate elements of the learner’s environment, and presents contextual just-in-time information.
“The primer includes sensors that monitor the learner’s actions and provide feedback. The learner is in a cognitive apprenticeship with the book: The primer models a certain skill (through allegorical fairy tale characters), which the learner then imitates in real life.
“The primer follows a learning progression with increasingly more complex tasks. The educational goals of the primer are humanist: To support the learner to become a strong and independently thinking person.”
The primer, an individualized AI teaching companion is the result of technological convergence and is beautifully described by YouTuber CGP Grey in his video: Digital Aristotle: Thoughts on the Future of Education.
Your AI companion will have unlimited access to information on the cloud and will deliver it at the optimal speed to each student in an engaging, fun way. This AI will demonetize and democratize education, be available to everyone for free (just like Google), and offering the best education to the wealthiest and poorest children on the planet equally.
This AI companion is not a tutor who spouts facts, figures and answers, but a player on the side of the student, there to help him or her learn, and in so doing, learn how to learn better. The AI is always alert, watching for signs of frustration and boredom that may precede quitting, for signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and mastery, which might indicate a successful learning experience.
Ultimately, we’re heading towards a vastly more educated world. We are truly living during the most exciting time to be alive.
Mindsets for the 21st Century
Finally, it’s important for me to discuss mindsets. How we think about the future colors how we learn and what we do. I’ve written extensively about the importance of an abundance and exponential mindset for entrepreneurs and CEOs. I also think that attention to mindset in our elementary schools, when a child is shaping the mental “operating system” for the rest of their life, is even more important.
As such, I would recommend that a school adopt a set of principles that teach and promote a number of mindsets in the fabric of their programs.
Many “mindsets” are important to promote. Here are a couple to consider:
Nurturing Optimism & An Abundance Mindset:
We live in a competitive world, and kids experience a significant amount of pressure to perform. When they fall short, they feel deflated. We all fail at times; that’s part of life. If we want to raise “can-do” kids who can work through failure and come out stronger for it, it’s wise to nurture optimism. Optimistic kids are more willing to take healthy risks, are better problem-solvers, and experience positive relationships. You can nurture optimism in your school by starting each day by focusing on gratitude (what each child is grateful for), or a “positive focus” in which each student takes 30 seconds to talk about what they are most excited about, or what recent event was positively impactful to them. (NOTE: I start every meeting inside my Strike Force team with a positive focus.)
Finally, helping students understand (through data and graphs) that the world is in fact getting better (see my first book: Abundance: The Future is Better Than You Think) will help them counter the continuous flow of negative news flowing through our news media.
When kids feel confident in their abilities and excited about the world, they are willing to work harder and be more creative.
Tolerance for Failure:
Tolerating failure is a difficult lesson to learn and a difficult lesson to teach. But it is critically important to succeeding in life.
Astro Teller, who runs Google’s innovation branch “X,” talks a lot about encouraging failure. At X, they regularly try to “kill” their ideas. If they are successful in killing an idea, and thus “failing,” they save lots of time, money and resources. The ideas they can’t kill survive and develop into billion-dollar businesses. The key is that each time an idea is killed, Astro rewards the team, literally, with cash bonuses. Their failure is celebrated and they become a hero.
This should be reproduced in the classroom: kids should try to be critical of their best ideas (learn critical thinking), then they should be celebrated for ‘successfully failing,’ perhaps with cake, balloons, confetti, and lots of Silly String.
Join Me & Get Involved!
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: sakkarin sapu / Shutterstock.com Continue reading →
#433282 The 4 Waves of AI: Who Will Own the ...
Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.
Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.
Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:
The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.
With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.
In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.
I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.
With Sino-US competition heating up, who will own the future of technology?
Let’s dive in.
The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.
Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.
Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.
These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.
Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.
While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.
Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.
Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.
And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.
It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.
The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.
Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.
While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.
By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.
Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.
While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.
In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.
Take Chinese app Smart Finance, for instance.
While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.
Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.
But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.
And here’s where Smart Finance comes in.
An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.
On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.
Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.
The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.
As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.
Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.
As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.
Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.
While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.
Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.
With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.
Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.
One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.
The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.
Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.
While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.
Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.
While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.
Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.
Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.
Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.
A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.
Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.
Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.
Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.
While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.
Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.
Image Credit: Elena11 / Shutterstock.com Continue reading →
#431995 The 10 Grand Challenges Facing Robotics ...
Robotics research has been making great strides in recent years, but there are still many hurdles to the machines becoming a ubiquitous presence in our lives. The journal Science Robotics has now identified 10 grand challenges the field will have to grapple with to make that a reality.
Editors conducted an online survey on unsolved challenges in robotics and assembled an expert panel of roboticists to shortlist the 30 most important topics, which were then grouped into 10 grand challenges that could have major impact in the next 5 to 10 years. Here’s what they came up with.
1. New Materials and Fabrication Schemes
Roboticists are beginning to move beyond motors, gears, and sensors by experimenting with things like artificial muscles, soft robotics, and new fabrication methods that combine multiple functions in one material. But most of these advances have been “one-off” demonstrations, which are not easy to combine.
Multi-functional materials merging things like sensing, movement, energy harvesting, or energy storage could allow more efficient robot designs. But combining these various properties in a single machine will require new approaches that blend micro-scale and large-scale fabrication techniques. Another promising direction is materials that can change over time to adapt or heal, but this requires much more research.
2. Bioinspired and Bio-Hybrid Robots
Nature has already solved many of the problems roboticists are trying to tackle, so many are turning to biology for inspiration or even incorporating living systems into their robots. But there are still major bottlenecks in reproducing the mechanical performance of muscle and the ability of biological systems to power themselves.
There has been great progress in artificial muscles, but their robustness, efficiency, and energy and power density need to be improved. Embedding living cells into robots can overcome challenges of powering small robots, as well as exploit biological features like self-healing and embedded sensing, though how to integrate these components is still a major challenge. And while a growing “robo-zoo” is helping tease out nature’s secrets, more work needs to be done on how animals transition between capabilities like flying and swimming to build multimodal platforms.
3. Power and Energy
Energy storage is a major bottleneck for mobile robotics. Rising demand from drones, electric vehicles, and renewable energy is driving progress in battery technology, but the fundamental challenges have remained largely unchanged for years.
That means that in parallel to battery development, there need to be efforts to minimize robots’ power utilization and give them access to new sources of energy. Enabling them to harvest energy from their environment and transmitting power to them wirelessly are two promising approaches worthy of investigation.
4. Robot Swarms
Swarms of simple robots that assemble into different configurations to tackle various tasks can be a cheaper, more flexible alternative to large, task-specific robots. Smaller, cheaper, more powerful hardware that lets simple robots sense their environment and communicate is combining with AI that can model the kind of behavior seen in nature’s flocks.
But there needs to be more work on the most efficient forms of control at different scales—small swarms can be controlled centrally, but larger ones need to be more decentralized. They also need to be made robust and adaptable to the changing conditions of the real world and resilient to deliberate or accidental damage. There also needs to be more work on swarms of non-homogeneous robots with complementary capabilities.
5. Navigation and Exploration
A key use case for robots is exploring places where humans cannot go, such as the deep sea, space, or disaster zones. That means they need to become adept at exploring and navigating unmapped, often highly disordered and hostile environments.
The major challenges include creating systems that can adapt, learn, and recover from navigation failures and are able to make and recognize new discoveries. This will require high levels of autonomy that allow the robots to monitor and reconfigure themselves while being able to build a picture of the world from multiple data sources of varying reliability and accuracy.
6. AI for Robotics
Deep learning has revolutionized machines’ ability to recognize patterns, but that needs to be combined with model-based reasoning to create adaptable robots that can learn on the fly.
Key to this will be creating AI that’s aware of its own limitations and can learn how to learn new things. It will also be important to create systems that are able to learn quickly from limited data rather than the millions of examples used in deep learning. Further advances in our understanding of human intelligence will be essential to solving these problems.
7. Brain-Computer Interfaces
BCIs will enable seamless control of advanced robotic prosthetics but could also prove a faster, more natural way to communicate instructions to robots or simply help them understand human mental states.
Most current approaches to measuring brain activity are expensive and cumbersome, though, so work on compact, low-power, and wireless devices will be important. They also tend to involve extended training, calibration, and adaptation due to the imprecise nature of reading brain activity. And it remains to be seen if they will outperform simpler techniques like eye tracking or reading muscle signals.
8. Social Interaction
If robots are to enter human environments, they will need to learn to deal with humans. But this will be difficult, as we have very few concrete models of human behavior and we are prone to underestimate the complexity of what comes naturally to us.
Social robots will need to be able to perceive minute social cues like facial expression or intonation, understand the cultural and social context they are operating in, and model the mental states of people they interact with to tailor their dealings with them, both in the short term and as they develop long-standing relationships with them.
9. Medical Robotics
Medicine is one of the areas where robots could have significant impact in the near future. Devices that augment a surgeon’s capabilities are already in regular use, but the challenge will be to increase the autonomy of these systems in such a high-stakes environment.
Autonomous robot assistants will need to be able to recognize human anatomy in a variety of contexts and be able to use situational awareness and spoken commands to understand what’s required of them. In surgery, autonomous robots could perform the routine steps of a procedure, giving way to the surgeon for more complicated patient-specific bits.
Micro-robots that operate inside the human body also hold promise, but there are still many roadblocks to their adoption, including effective delivery systems, tracking and control methods, and crucially, finding therapies where they improve on current approaches.
10. Robot Ethics and Security
As the preceding challenges are overcome and robots are increasingly integrated into our lives, this progress will create new ethical conundrums. Most importantly, we may become over-reliant on robots.
That could lead to humans losing certain skills and capabilities, making us unable to take the reins in the case of failures. We may end up delegating tasks that should, for ethical reasons, have some human supervision, and allow people to pass the buck to autonomous systems in the case of failure. It could also reduce self-determination, as human behaviors change to accommodate the routines and restrictions required for robots and AI to work effectively.
Image Credit: Zenzen / Shutterstock.com Continue reading →