Tag Archives: education
#437610 How Intel’s OpenBot Wants to Make ...
You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”
This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.
Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.
One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.
As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.
And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.
Image: OpenBot
Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.
If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”
Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.
The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading
#437301 The Global Work Crisis: Automation, the ...
The alarm bell rings. You open your eyes, come to your senses, and slide from dream state to consciousness. You hit the snooze button, and eventually crawl out of bed to the start of yet another working day.
This daily narrative is experienced by billions of people all over the world. We work, we eat, we sleep, and we repeat. As our lives pass day by day, the beating drums of the weekly routine take over and years pass until we reach our goal of retirement.
A Crisis of Work
We repeat the routine so that we can pay our bills, set our kids up for success, and provide for our families. And after a while, we start to forget what we would do with our lives if we didn’t have to go back to work.
In the end, we look back at our careers and reflect on what we’ve achieved. It may have been the hundreds of human interactions we’ve had; the thousands of emails read and replied to; the millions of minutes of physical labor—all to keep the global economy ticking along.
According to Gallup’s World Poll, only 15 percent of people worldwide are actually engaged with their jobs. The current state of “work” is not working for most people. In fact, it seems we as a species are trapped by a global work crisis, which condemns people to cast away their time just to get by in their day-to-day lives.
Technologies like artificial intelligence and automation may help relieve the work burdens of millions of people—but to benefit from their impact, we need to start changing our social structures and the way we think about work now.
The Specter of Automation
Automation has been ongoing since the Industrial Revolution. In recent decades it has taken on a more elegant guise, first with physical robots in production plants, and more recently with software automation entering most offices.
The driving goal behind much of this automation has always been productivity and hence, profits: technology that can act as a multiplier on what a single human can achieve in a day is of huge value to any company. Powered by this strong financial incentive, the quest for automation is growing ever more pervasive.
But if automation accelerates or even continues at its current pace and there aren’t strong social safety nets in place to catch the people who are negatively impacted (such as by losing their jobs), there could be a host of knock-on effects, including more concentrated wealth among a shrinking elite, more strain on government social support, an increase in depression and drug dependence, and even violent social unrest.
It seems as though we are rushing headlong into a major crisis, driven by the engine of accelerating automation. But what if instead of automation challenging our fragile status quo, we view it as the solution that can free us from the shackles of the Work Crisis?
The Way Out
In order to undertake this paradigm shift, we need to consider what society could potentially look like, as well as the problems associated with making this change. In the context of these crises, our primary aim should be for a system where people are not obligated to work to generate the means to survive. This removal of work should not threaten access to food, water, shelter, education, healthcare, energy, or human value. In our current system, work is the gatekeeper to these essentials: one can only access these (and even then often in a limited form), if one has a “job” that affords them.
Changing this system is thus a monumental task. This comes with two primary challenges: providing people without jobs with financial security, and ensuring they maintain a sense of their human value and worth. There are several measures that could be implemented to help meet these challenges, each with important steps for society to consider.
Universal basic income (UBI)
UBI is rapidly gaining support, and it would allow people to become shareholders in the fruits of automation, which would then be distributed more broadly.
UBI trials have been conducted in various countries around the world, including Finland, Kenya, and Spain. The findings have generally been positive on the health and well-being of the participants, and showed no evidence that UBI disincentivizes work, a common concern among the idea’s critics. The most recent popular voice for UBI has been that of former US presidential candidate Andrew Yang, who now runs a non-profit called Humanity Forward.
UBI could also remove wasteful bureaucracy in administering welfare payments (since everyone receives the same amount, there’s no need to prevent false claims), and promote the pursuit of projects aligned with peoples’ skill sets and passions, as well as quantifying the value of tasks not recognized by economic measures like Gross Domestic Product (GDP). This includes looking after children and the elderly at home.
How a UBI can be initiated with political will and social backing and paid for by governments has been hotly debated by economists and UBI enthusiasts. Variables like how much the UBI payments should be, whether to implement taxes such as Yang’s proposed valued added tax (VAT), whether to replace existing welfare payments, the impact on inflation, and the impact on “jobs” from people who would otherwise look for work require additional discussion. However, some have predicted the inevitability of UBI as a result of automation.
Universal healthcare
Another major component of any society is the healthcare of its citizens. A move away from work would further require the implementation of a universal healthcare system to decouple healthcare from jobs. Currently in the US, and indeed many other economies, healthcare is tied to employment.
Universal healthcare such as Medicare in Australia is evidence for the adage “prevention is better than cure,” when comparing the cost of healthcare in the US with Australia on a per capita basis. This has already presented itself as an advancement in the way healthcare is considered. There are further benefits of a healthier population, including less time and money spent on “sick-care.” Healthy people are more likely and more able to achieve their full potential.
Reshape the economy away from work-based value
One of the greatest challenges in a departure from work is for people to find value elsewhere in life. Many people view their identities as being inextricably tied to their jobs, and life without a job is therefore a threat to one’s sense of existence. This presents a shift that must be made at both a societal and personal level.
A person can only seek alternate value in life when afforded the time to do so. To this end, we need to start reducing “work-for-a-living” hours towards zero, which is a trend we are already seeing in Europe. This should not come at the cost of reducing wages pro rata, but rather could be complemented by UBI or additional schemes where people receive dividends for work done by automation. This transition makes even more sense when coupled with the idea of deviating from using GDP as a measure of societal growth, and instead adopting a well-being index based on universal human values like health, community, happiness, and peace.
The crux of this issue is in transitioning away from the view that work gives life meaning and life is about using work to survive, towards a view of living a life that itself is fulfilling and meaningful. This speaks directly to notions from Maslow’s hierarchy of needs, where work largely addresses psychological and safety needs such as shelter, food, and financial well-being. More people should have a chance to grow beyond the most basic needs and engage in self-actualization and transcendence.
The question is largely around what would provide people with a sense of value, and the answers would differ as much as people do; self-mastery, building relationships and contributing to community growth, fostering creativity, and even engaging in the enjoyable aspects of existing jobs could all come into play.
Universal education
With a move towards a society that promotes the values of living a good life, the education system would have to evolve as well. Researchers have long argued for a more nimble education system, but universities and even most online courses currently exist for the dominant purpose of ensuring people are adequately skilled to contribute to the economy. These “job factories” only exacerbate the Work Crisis. In fact, the response often given by educational institutions to the challenge posed by automation is to find new ways of upskilling students, such as ensuring they are all able to code. As alluded to earlier, this is a limited and unimaginative solution to the problem we are facing.
Instead, education should be centered on helping people acknowledge the current crisis of work and automation, teach them how to derive value that is decoupled from work, and enable people to embrace progress as we transition to the new economy.
Disrupting the Status Quo
While we seldom stop to think about it, much of the suffering faced by humanity is brought about by the systemic foe that is the Work Crisis. The way we think about work has brought society far and enabled tremendous developments, but at the same time it has failed many people. Now the status quo is threatened by those very developments as we progress to an era where machines are likely to take over many job functions.
This impending paradigm shift could be a threat to the stability of our fragile system, but only if it is not fully anticipated. If we prepare for it appropriately, it could instead be the key not just to our survival, but to a better future for all.
Image Credit: mostafa meraji from Pixabay Continue reading
#437276 Cars Will Soon Be Able to Sense and ...
Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.
Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.
Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.
What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?
Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.
Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.
Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.
Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.
But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).
Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?
Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.
And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.
Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.
A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.
Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.
Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.
Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.
Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.
In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.
Image Credit: Free-Photos from Pixabay Continue reading