Tag Archives: dr

#437583 Video Friday: Attack of the Hexapod ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Happy Halloween from HEBI Robotics!

Thanks Hardik!

[ HEBI Robotics ]

Happy Halloween from Berkshire Grey!

[ Berkshire Grey ]

These are some preliminary results of our lab’s new work on using reinforcement learning to train neural networks to imitate common bipedal gait behaviors, without using any motion capture data or reference trajectories. Our method is described in an upcoming submission to ICRA 2021. Work by Jonah Siekmann and Yesh Godse.

[ OSU DRL ]

The northern goshawk is a fast, powerful raptor that flies effortlessly through forests. This bird was the design inspiration for the next-generation drone developed by scientifics of the Laboratory of Intelligent Systems of EPFL led by Dario Floreano. They carefully studied the shape of the bird’s wings and tail and its flight behavior, and used that information to develop a drone with similar characteristics.

The engineers already designed a bird-inspired drone with morphing wing back in 2016. In a step forward, their new model can adjust the shape of its wing and tail thanks to its artificial feathers. Flying this new type of drone isn’t easy, due to the large number of wing and tail configurations possible. To take full advantage of the drone’s flight capabilities, Floreano’s team plans to incorporate artificial intelligence into the drone’s flight system so that it can fly semi-automatically. The team’s research has been published in Science Robotics.

[ EPFL ]

Oopsie.

[ Roborace ]

We’ve covered MIT’s Roboats in the past, but now they’re big enough to keep a couple of people afloat.

Self-driving boats have been able to transport small items for years, but adding human passengers has felt somewhat intangible due to the current size of the vessels. Roboat II is the “half-scale” boat in the growing body of work, and joins the previously developed quarter-scale Roboat, which is 1 meter long. The third installment, which is under construction in Amsterdam and is considered to be “full scale,” is 4 meters long and aims to carry anywhere from four to six passengers.

[ MIT ]

With a training technique commonly used to teach dogs to sit and stay, Johns Hopkins University computer scientists showed a robot how to teach itself several new tricks, including stacking blocks. With the method, the robot, named Spot, was able to learn in days what typically takes a month.

[ JHU ]

Exyn, a pioneer in autonomous aerial robot systems for complex, GPS-denied industrial environments, today announced the first dog, Kody, to successfully fly a drone at Number 9 Coal Mine, in Lansford, PA. Selected to carry out this mission was the new autonomous aerial robot, the ExynAero.

Yes, this is obviously a publicity stunt, and Kody is only flying the drone in the sense that he’s pushing the launch button and then taking a nap. But that’s also the point— drone autonomy doesn’t get much fuller than this, despite the challenge of the environment.

[ Exyn ]

In this video object instance segmentation and shape completion are combined with classical regrasp planning to perform pick-place of novel objects. It is demonstrated with a UR5, Robotiq 85 parallel-jaw gripper, and Structure depth sensor with three rearrangement tasks: bin packing (minimize the height of the packing), placing bottles onto coasters, and arrange blocks from tallest to shortest (according to the longest edge). The system also accounts for uncertainty in the segmentation/completion by avoiding grasping or placing on parts of the object where perceptual uncertainty is predicted to be high.

[ Paper ] via [ Northeastern ]

Thanks Marcus!

U can’t touch this!

[ University of Tokyo ]

We introduce a way to enable more natural interaction between humans and robots through Mixed Reality, by using a shared coordinate system. Azure Spatial Anchors, which already supports colocalizing multiple HoloLens and smartphone devices in the same space, has now been extended to support robots equipped with cameras. This allows humans and robots sharing the same space to interact naturally: humans can see the plan and intention of the robot, while the robot can interpret commands given from the person’s perspective. We hope that this can be a building block in the future of humans and robots being collaborators and coworkers.

[ Microsoft ]

Some very high jumps from the skinniest quadruped ever.

[ ODRI ]

In this video we present recent efforts to make our humanoid robot LOLA ready for multi-contact locomotion, i.e. additional hand-environment support for extra stabilization during walking.

[ TUM ]

Classic bike moves from Dr. Guero.

[ Dr. Guero ]

For a robotics company, iRobot is OLD.

[ iRobot ]

The Canadian Space Agency presents Juno, a preliminary version of a rover that could one day be sent to the Moon or Mars. Juno can navigate autonomously or be operated remotely. The Lunar Exploration Analogue Deployment (LEAD) consisted in replicating scenarios of a lunar sample return mission.

[ CSA ]

How exactly does the Waymo Driver handle a cat cutting across its driving path? Jonathan N., a Product Manager on our Perception team, breaks it all down for us.

Now do kangaroos.

[ Waymo ]

Jibo is hard at work at MIT playing games with kids.

Children’s creativity plummets as they enter elementary school. Social interactions with peers and playful environments have been shown to foster creativity in children. Digital pedagogical tools often lack the creativity benefits of co-located social interaction with peers. In this work, we leverage a social embodied robot as a playful peer and designed Escape!Bot, a game involving child-robot co-play, where the robot is a social agent that scaffolds for creativity during gameplay.

[ Paper ]

It’s nice when convenience stores are convenient even for the folks who have to do the restocking.

Who’s moving the crates around, though?

[ Telexistence ]

Hi, fans ! Join the ROS World 2020, opening November 12th , and see the footage of ROBOTIS’ ROS platform robots 🙂

[ ROS World 2020 ]

ML/RL methods are often viewed as a magical black box, and while that’s not true, learned policies are nonetheless a valuable tool that can work in conjunction with the underlying physics of the robot. In this video, Agility CTO Jonathan Hurst – wearing his professor hat at Oregon State University – presents some recent student work on using learned policies as a control method for highly dynamic legged robots.

[ Agility Robotics ]

Here’s an ICRA Legged Robots workshop talk from Marco Hutter at ETH Zürich, on Autonomy for ANYmal.

Recent advances in legged robots and their locomotion skills has led to systems that are skilled and mature enough for real-world deployment. In particular, quadrupedal robots have reached a level of mobility to navigate complex environments, which enables them to take over inspection or surveillance jobs in place like offshore industrial plants, in underground areas, or on construction sites. In this talk, I will present our research work with the quadruped ANYmal and explain some of the underlying technologies for locomotion control, environment perception, and mission autonomy. I will show how these robots can learn and plan complex maneuvers, how they can navigate through unknown environments, and how they are able to conduct surveillance, inspection, or exploration scenarios.

[ RSL ] Continue reading

Posted in Human Robots

#437562 Video Friday: Aquanaut Robot Takes to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

To prepare the Perseverance rover for its date with Mars, NASA’s Mars 2020 mission team conducted a wide array of tests to help ensure a successful entry, descent and landing at the Red Planet. From parachute verification in the world’s largest wind tunnel, to hazard avoidance practice in Death Valley, California, to wheel drop testing at NASA’s Jet Propulsion Laboratory and much more, every system was put through its paces to get ready for the big day. The Perseverance rover is scheduled to land on Mars on February 18, 2021.

[ JPL ]

Awesome to see Aquanaut—the “underwater transformer” we wrote about last year—take to the ocean!

Also their new website has SHARKS on it.

[ HMI ]

Nature has inspired engineers at UNSW Sydney to develop a soft fabric robotic gripper which behaves like an elephant's trunk to grasp, pick up and release objects without breaking them.

[ UNSW ]

Collaborative robots offer increased interaction capabilities at relatively low cost but, in contrast to their industrial counterparts, they inevitably lack precision. We address this problem by relying on a dual-arm system with laser-based sensing to measure relative poses between objects of interest and compensate for pose errors coming from robot proprioception.

[ Paper ]

Developed by NAVER LABS, with Korea University of Technology & Education (Koreatech), the robot arm now features an added waist, extending the available workspace, as well as a sensor head that can perceive objects. It has also been equipped with a robot hand “BLT Gripper” that can change to various grasping methods.

[ NAVER Labs ]

In case you were still wondering why SoftBank acquired Aldebaran and Boston Dynamics:

[ RobotStart ]

DJI's new Mini 2 drone is here with a commercial so hip it makes my teeth scream.

[ DJI ]

Using simple materials, such as plastic struts and cardboard rolls, the first prototype of the RBO Hand 3 is already capable of grasping a large range of different objects thanks to its opposable thumb.

The RBO Hand 3 performs an edge grasp before handing-over the object to a person. The hand actively exploits constraints in the environment (the tabletop) for grasping the object. Thanks to its compliance, this interaction is safe and robust.

[ TU Berlin ]

Flyability's Elios 2 helped researchers inspect Reactor Five at the Chernobyl nuclear disaster site in order to determine whether any uranium was present. Prior to this mission, Reactor Five had not been investigated since the disaster in April of 1986.

[ Flyability ]

Thanks Zacc!

SOTO 2 is here! Together with our development partners from the industry, we have greatly enhanced the SOTO prototype over the last two years. With the new version of the robot, Industry 4.0 will become a great deal more real: SOTO brings materials to the assembly line, just-in-time and completely autonomously.

[ Magazino ]

A drone that can fly sustainably for long distances over land and water, and can land almost anywhere, will be able to serve a wide range of applications. There are already drones that fly using ‘green’ hydrogen, but they either fly very slowly or cannot land vertically. That’s why researchers at TU Delft, together with the Royal Netherlands Navy and the Netherlands Coastguard, developed a hydrogen-powered drone that is capable of vertical take-off and landing whilst also being able to fly horizontally efficiently for several hours, much like regular aircraft. The drone uses a combination of hydrogen and batteries as its power source.

[ MAVLab ]

The National Nuclear User Facility for Hot Robotics (NNUF-HR) is an EPSRC funded facility to support UK academia and industry to deliver ground-breaking, impactful research in robotics and artificial intelligence for application in extreme and challenging nuclear environments.

[ NNUF ]

At the Karolinska University Laboratory in Sweden, an innovation project based around an ABB collaborative robot has increased efficiency and created a better working environment for lab staff.

[ ABB ]

What I find interesting about DJI's enormous new agricultural drone is that it's got a spinning obstacle detecting sensor that's a radar, not a lidar.

Also worth noting is that it seems to detect the telephone pole, but not the support wire that you can see in the video feed, although the visualization does make it seem like it can spot the power lines above.

[ DJI ]

Josh Pieper has spend the last year building his own quadruped, and you can see what he's been up to in just 12 minutes.

[ mjbots ]

Thanks Josh!

Dr. Ryan Eustice, TRI Senior Vice President of Automated Driving, delivers a keynote speech — “The Road to Vehicle Automation, a Toyota Guardian Approach” — to SPIE's Future Sensing Technologies 2020. During the presentation, Eustice provides his perspective on the current state of automated driving, summarizes TRI's Guardian approach — which amplifies human drivers, rather than replacing them — and summarizes TRI's recent developments in core AD capabilities.

[ TRI ]

Two excellent talks this week from UPenn GRASP Lab, from Ruzena Bajcsy and Vijay Kumar.

A panel discussion on the future of robotics and societal challenges with Dr. Ruzena Bajcsy as a Roboticist and Founder of the GRASP Lab.

In this talk I will describe the role of the White House Office of Science and Technology Policy in supporting science and technology research and education, and the lessons I learned while serving in the office. I will also identify a few opportunities at the intersection of technology and policy and broad societal challenges.

[ UPenn ]

The IROS 2020 “Perception, Learning, and Control for Autonomous Agile Vehicles” workshop is all online—here's the intro, but you can click through for a playlist that includes videos of the entire program, and slides are available as well.

[ NYU ] Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots

#437491 3.2 Billion Images and 720,000 Hours of ...

Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.

Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”

The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.

A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours

In the video, Biden says “Hello, Minnesota.”

The event did indeed happen in MN — signs on stage read MN

But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v

— Donie O'Sullivan (@donie) November 1, 2020

If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?

While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.

Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.

For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.

Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.

Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.

Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr

— Dope Historic Pics (@dopehistoricpic) December 20, 2013

This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.

In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.

“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.

This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5

— Willie's Reserve (@WilliesReserve) January 21, 2019

Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.

Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.

You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a

— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020

Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.

Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh

— EVC Music (@EVCMusicUK) January 6, 2020

Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.

Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.

These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY

Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.

We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.

Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP

But what about edits that only alter pixel values such as color, saturation, or contrast?

One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”

Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).

Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.

Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:

Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.

Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.

Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”

Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.

Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.

If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.

The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:

Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?

Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Simon Steinberger from Pixabay Continue reading

Posted in Human Robots

#437337 6G Will Be 100 Times Faster Than ...

Though 5G—a next-generation speed upgrade to wireless networks—is scarcely up and running (and still nonexistent in many places) researchers are already working on what comes next. It lacks an official name, but they’re calling it 6G for the sake of simplicity (and hey, it’s tradition). 6G promises to be up to 100 times faster than 5G—fast enough to download 142 hours of Netflix in a second—but researchers are still trying to figure out exactly how to make such ultra-speedy connections happen.

A new chip, described in a paper in Nature Photonics by a team from Osaka University and Nanyang Technological University in Singapore, may give us a glimpse of our 6G future. The team was able to transmit data at a rate of 11 gigabits per second, topping 5G’s theoretical maximum speed of 10 gigabits per second and fast enough to stream 4K high-def video in real time. They believe the technology has room to grow, and with more development, might hit those blistering 6G speeds.

NTU final year PhD student Abhishek Kumar, Assoc Prof Ranjan Singh and postdoc Dr Yihao Yang. Dr Singh is holding the photonic topological insulator chip made from silicon, which can transmit terahertz waves at ultrahigh speeds. Credit: NTU Singapore
But first, some details about 5G and its predecessors so we can differentiate them from 6G.

Electromagnetic waves are characterized by a wavelength and a frequency; the wavelength is the distance a cycle of the wave covers (peak to peak or trough to trough, for example), and the frequency is the number of waves that pass a given point in one second. Cellphones use miniature radios to pick up electromagnetic signals and convert those signals into the sights and sounds on your phone.

4G wireless networks run on millimeter waves on the low- and mid-band spectrum, defined as a frequency of a little less (low-band) and a little more (mid-band) than one gigahertz (or one billion cycles per second). 5G kicked that up several notches by adding even higher frequency millimeter waves of up to 300 gigahertz, or 300 billion cycles per second. Data transmitted at those higher frequencies tends to be information-dense—like video—because they’re much faster.

The 6G chip kicks 5G up several more notches. It can transmit waves at more than three times the frequency of 5G: one terahertz, or a trillion cycles per second. The team says this yields a data rate of 11 gigabits per second. While that’s faster than the fastest 5G will get, it’s only the beginning for 6G. One wireless communications expert even estimates 6G networks could handle rates up to 8,000 gigabits per second; they’ll also have much lower latency and higher bandwidth than 5G.

Terahertz waves fall between infrared waves and microwaves on the electromagnetic spectrum. Generating and transmitting them is difficult and expensive, requiring special lasers, and even then the frequency range is limited. The team used a new material to transmit terahertz waves, called photonic topological insulators (PTIs). PTIs can conduct light waves on their surface and edges rather than having them run through the material, and allow light to be redirected around corners without disturbing its flow.

The chip is made completely of silicon and has rows of triangular holes. The team’s research showed the chip was able to transmit terahertz waves error-free.

Nanyang Technological University associate professor Ranjan Singh, who led the project, said, “Terahertz technology […] can potentially boost intra-chip and inter-chip communication to support artificial intelligence and cloud-based technologies, such as interconnected self-driving cars, which will need to transmit data quickly to other nearby cars and infrastructure to navigate better and also to avoid accidents.”

Besides being used for AI and self-driving cars (and, of course, downloading hundreds of hours of video in seconds), 6G would also make a big difference for data centers, IoT devices, and long-range communications, among other applications.

Given that 5G networks are still in the process of being set up, though, 6G won’t be coming on the scene anytime soon; a recent whitepaper on 6G from Japanese company NTTDoCoMo estimates we’ll see it in 2030, pointing out that wireless connection tech generations have thus far been spaced about 10 years apart; we got 3G in the early 2000s, 4G in 2010, and 5G in 2020.

In the meantime, as 6G continues to develop, we’re still looking forward to the widespread adoption of 5G.

Image Credit: Hans Braxmeier from Pixabay Continue reading

Posted in Human Robots