Tag Archives: double

#439073 There’s a ‘New’ Nirvana Song Out, ...

One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.

Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.

The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.

The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.

Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.

The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.

To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.

Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”

Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.

The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.

How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”

Image Credit: Edward Xu on Unsplash Continue reading

Posted in Human Robots

#438886 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
This Chip for AI Works Using Light, Not Electrons
Will Knight | Wired
“As demand for artificial intelligence grows, so does hunger for the computer power needed to keep AI running. Lightmatter, a startup born at MIT, is betting that AI’s voracious hunger will spawn demand for a fundamentally different kind of computer chip—one that uses light to perform key calculations. ‘Either we invent new kinds of computers to continue,’ says Lightmatter CEO Nick Harris, ‘or AI slows down.’i”

BIOTECH
With This CAD for Genomes, You Can Design New Organisms
Eliza Strickland | IEEE Spectrum
“Imagine being able to design a new organism as easily as you can design a new integrated circuit. That’s the ultimate vision behind the computer-aided design (CAD) program being developed by the GP-write consortium. ‘We’re taking the same things we’d do for design automation in electronics, and applying them to biology,’ says Doug Densmore, an associate professor of electrical and computer engineering at Boston University.”

BIOLOGY
Hey, So These Sea Slugs Decapitate Themselves and Grow New Bodies
Matt Simon | Wired
“That’s right: It pulled a Deadpool. Just a few hours after its self-decapitation, the head began dragging itself around to feed. After a day, the neck wound had closed. After a week, it started to regenerate a heart. In less than a month, the whole body had grown back, and the disembodied slug was embodied once more.”

INTERNET
Move Over, Deep Nostalgia, This AI App Can Make Kim Jong-un Sing ‘I Will Survive’
Helen Sullivan | The Guardian
“If you’ve ever wanted to know what it might be like to see Kim Jong-un let loose at karaoke, your wish has been granted, thanks to an app that lets users turn photographs of anyone—or anything remotely resembling a face—into uncanny AI-powered videos of them lip syncing famous songs.”

ENERGY
GM Unveils Plans for Lithium-Metal Batteries That Could Boost EV Range
Steve Dent | Engadget
“GM has released more details about its next-generation Ultium batteries, including plans for lithium-metal (Li-metal) technology to boost performance and energy density. The automaker announced that it has signed an agreement to work with SolidEnergy Systems (SES), an MIT spinoff developing prototype Li-metal batteries with nearly double the capacity of current lithium-ion cells.”

TECHNOLOGY
Xi’s Gambit: China Plans for a World Without American Technology
Paul Mozur and Steven Lee Myers | The New York Times
“China is freeing up tens of billions of dollars for its tech industry to borrow. It is cataloging the sectors where the United States or others could cut off access to crucial technologies. And when its leaders released their most important economic plans last week, they laid out their ambitions to become an innovation superpower beholden to none.”

SCIENCE
Imaginary Numbers May Be Essential for Describing Reality
Charlie Wood | Wired
“…physicists may have just shown for the first time that imaginary numbers are, in a sense, real. A group of quantum theorists designed an experiment whose outcome depends on whether nature has an imaginary side. Provided that quantum mechanics is correct—an assumption few would quibble with—the team’s argument essentially guarantees that complex numbers are an unavoidable part of our description of the physical universe.”

PHILOSOPHY
What Is Life? Its Vast Diversity Defies Easy Definition
Carl Zimmer | Quanta
“i‘It is commonly said,’ the scientists Frances Westall and André Brack wrote in 2018, ‘that there are as many definitions of life as there are people trying to define it.’ …As an observer of science and of scientists, I find this behavior strange. It is as if astronomers kept coming up with new ways to define stars. …With scientists adrift in an ocean of definitions, philosophers rowed out to offer lifelines.”

Image Credit: Kir Simakov / Unsplash Continue reading

Posted in Human Robots

#437957 Meet Assembloids, Mini Human Brains With ...

It’s not often that a twitching, snowman-shaped blob of 3D human tissue makes someone’s day.

But when Dr. Sergiu Pasca at Stanford University witnessed the tiny movement, he knew his lab had achieved something special. You see, the blob was evolved from three lab-grown chunks of human tissue: a mini-brain, mini-spinal cord, and mini-muscle. Each individual component, churned to eerie humanoid perfection inside bubbling incubators, is already a work of scientific genius. But Pasca took the extra step, marinating the three components together inside a soup of nutrients.

The result was a bizarre, Lego-like human tissue that replicates the basic circuits behind how we decide to move. Without external prompting, when churned together like ice cream, the three ingredients physically linked up into a fully functional circuit. The 3D mini-brain, through the information highway formed by the artificial spinal cord, was able to make the lab-grown muscle twitch on demand.

In other words, if you think isolated mini-brains—known formally as brain organoids—floating in a jar is creepy, upgrade your nightmares. The next big thing in probing the brain is assembloids—free-floating brain circuits—that now combine brain tissue with an external output.

The end goal isn’t to freak people out. Rather, it’s to recapitulate our nervous system, from input to output, inside the controlled environment of a Petri dish. An autonomous, living brain-spinal cord-muscle entity is an invaluable model for figuring out how our own brains direct the intricate muscle movements that allow us stay upright, walk, or type on a keyboard.

It’s the nexus toward more dexterous brain-machine interfaces, and a model to understand when brain-muscle connections fail—as in devastating conditions like Lou Gehrig’s disease or Parkinson’s, where people slowly lose muscle control due to the gradual death of neurons that control muscle function. Assembloids are a sort of “mini-me,” a workaround for testing potential treatments on a simple “replica” of a person rather than directly on a human.

From Organoids to Assembloids
The miniature snippet of the human nervous system has been a long time in the making.

It all started in 2014, when Dr. Madeleine Lancaster, then a post-doc at Stanford, grew a shockingly intricate 3D replica of human brain tissue inside a whirling incubator. Revolutionarily different than standard cell cultures, which grind up brain tissue to reconstruct as a flat network of cells, Lancaster’s 3D brain organoids were incredibly sophisticated in their recapitulation of the human brain during development. Subsequent studies further solidified their similarity to the developing brain of a fetus—not just in terms of neuron types, but also their connections and structure.

With the finding that these mini-brains sparked with electrical activity, bioethicists increasingly raised red flags that the blobs of human brain tissue—no larger than the size of a pea at most—could harbor the potential to develop a sense of awareness if further matured and with external input and output.

Despite these concerns, brain organoids became an instant hit. Because they’re made of human tissue—often taken from actual human patients and converted into stem-cell-like states—organoids harbor the same genetic makeup as their donors. This makes it possible to study perplexing conditions such as autism, schizophrenia, or other brain disorders in a dish. What’s more, because they’re grown in the lab, it’s possible to genetically edit the mini-brains to test potential genetic culprits in the search for a cure.

Yet mini-brains had an Achilles’ heel: not all were made the same. Rather, depending on the region of the brain that was reverse engineered, the cells had to be persuaded by different cocktails of chemical soups and maintained in isolation. It was a stark contrast to our own developing brains, where regions are connected through highways of neural networks and work in tandem.

Pasca faced the problem head-on. Betting on the brain’s self-assembling capacity, his team hypothesized that it might be possible to grow different mini-brains, each reflecting a different brain region, and have them fuse together into a synchronized band of neuron circuits to process information. Last year, his idea paid off.

In one mind-blowing study, his team grew two separate portions of the brain into blobs, one representing the cortex, the other a deeper part of the brain known to control reward and movement, called the striatum. Shockingly, when put together, the two blobs of human brain tissue fused into a functional couple, automatically establishing neural highways that resulted in one of the most sophisticated recapitulations of a human brain. Pasca crowned this tissue engineering crème-de-la-crème “assembloids,” a portmanteau between “assemble” and “organoids.”

“We have demonstrated that regionalized brain spheroids can be put together to form fused structures called brain assembloids,” said Pasca at the time.” [They] can then be used to investigate developmental processes that were previously inaccessible.”

And if that’s possible for wiring up a lab-grown brain, why wouldn’t it work for larger neural circuits?

Assembloids, Assemble
The new study is the fruition of that idea.

The team started with human skin cells, scraped off of eight healthy people, and transformed them into a stem-cell-like state, called iPSCs. These cells have long been touted as the breakthrough for personalized medical treatment, before each reflects the genetic makeup of its original host.

Using two separate cocktails, the team then generated mini-brains and mini-spinal cords using these iPSCs. The two components were placed together “in close proximity” for three days inside a lab incubator, gently floating around each other in an intricate dance. To the team’s surprise, under the microscope using tracers that glow in the dark, they saw highways of branches extending from one organoid to the other like arms in a tight embrace. When stimulated with electricity, the links fired up, suggesting that the connections weren’t just for show—they’re capable of transmitting information.

“We made the parts,” said Pasca, “but they knew how to put themselves together.”

Then came the ménage à trois. Once the mini-brain and spinal cord formed their double-decker ice cream scoop, the team overlaid them onto a layer of muscle cells—cultured separately into a human-like muscular structure. The end result was a somewhat bizarre and silly-looking snowman, made of three oddly-shaped spherical balls.

Yet against all odds, the brain-spinal cord assembly reached out to the lab-grown muscle. Using a variety of tools, including measuring muscle contraction, the team found that this utterly Frankenstein-like snowman was able to make the muscle component contract—in a way similar to how our muscles twitch when needed.

“Skeletal muscle doesn’t usually contract on its own,” said Pasca. “Seeing that first twitch in a lab dish immediately after cortical stimulation is something that’s not soon forgotten.”

When tested for longevity, the contraption lasted for up to 10 weeks without any sort of breakdown. Far from a one-shot wonder, the isolated circuit worked even better the longer each component was connected.

Pasca isn’t the first to give mini-brains an output channel. Last year, the queen of brain organoids, Lancaster, chopped up mature mini-brains into slices, which were then linked to muscle tissue through a cultured spinal cord. Assembloids are a step up, showing that it’s possible to automatically sew multiple nerve-linked structures together, such as brain and muscle, sans slicing.

The question is what happens when these assembloids become more sophisticated, edging ever closer to the inherent wiring that powers our movements. Pasca’s study targets outputs, but what about inputs? Can we wire input channels, such as retinal cells, to mini-brains that have a rudimentary visual cortex to process those examples? Learning, after all, depends on examples of our world, which are processed inside computational circuits and delivered as outputs—potentially, muscle contractions.

To be clear, few would argue that today’s mini-brains are capable of any sort of consciousness or awareness. But as mini-brains get increasingly more sophisticated, at what point can we consider them a sort of AI, capable of computation or even something that mimics thought? We don’t yet have an answer—but the debates are on.

Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#437892 This Week’s Awesome Tech Stories From ...

ENVIRONMENT
Human-Made Stuff Now Outweighs All Life on Earth
Stephanie Pappas | Scientific American
“Humanity has reached a new milestone in its dominance of the planet: human-made objects may now outweigh all of the living beings on Earth. Roads, houses, shopping malls, fishing vessels, printer paper, coffee mugs, smartphones and all the other infrastructure of daily life now weigh in at approximately 1.1 trillion metric tons—equal to the combined dry weight of all plants, animals, fungi, bacteria, archaea and protists on the planet.”

SPACE
So, It Turns Out SpaceX Is Pretty Good at Rocketing
Eric Berger | Ars Technica
“As the Sun sank toward the South Texas horizon, a fantastical-looking spaceship rose into the reddening sky. It was, in a word, epic. …This was one heck of a test-flight that addressed a number of unknowns about Starship, which is the upper stage of SpaceX’s new launch system and may one day land humans on the Moon, Mars, and beyond.”

ARTIFICIAL INTELLIGENCE
Tiny Four-Bit Computers Are All You Need to Train AI
Karen Hao | MIT Technology Review
“The work…could increase the speed and cut the energy costs needed to train deep learning by more than sevenfold. It could also make training powerful AI models possible on smartphones and other small devices, which would improve privacy by helping to keep personal data on a local device. And it would make the process more accessible to researchers outside big, resource-rich tech companies.”

ENERGY
Did Quantum Scape Just Solve a 40-Year-Old Battery Problem?
Daniel Oberhaus | Wired
“[The properties of solid state batteries] would send…energy density through the roof, enable ultra-fast charging, and would eliminate the risk of battery fires. But for the past 40 years, no one has been able to make a solid-state battery that delivers on this promise—until earlier this year, when a secretive startup called QuantumScape claimed to have solved the problem. Now it has the data to prove it.”

ROBOTICS
Hyundai Buys Boston Dynamics for Nearly $1 Billion. Now What?
Evan Ackerman | IEEE Spectrum
“I hope that Boston Dynamics is unique enough that the kinds of rules that normally apply to robotics companies (or companies in general) can be set aside, at least somewhat, but I also worry that what made Boston Dynamics great was the explicit funding for the kinds of radical ideas that eventually resulted in robots like Atlas and Spot. Can Hyundai continue giving Boston Dynamics the support and freedom that they need to keep doing the kinds of things that have made them legendary? I certainly hope so.”

BIOTECH
CRISPR and Another Genetic Strategy Fix Cell Defects in Two Common Blood Disorders
Jocelyn Kaiser | Science
“It is a double milestone: new evidence that cures are possible for many people born with sickle cell disease and another serious blood disorder, beta-thalassemia, and a first for the genome editor CRISPR. Today, in The New England Journal of Medicine (NEJM) and tomorrow at the American Society of Hematology (ASH) meeting, teams report that two strategies for directly fixing malfunctioning blood cells have dramatically improved the health of a handful of people with these genetic diseases.”

ETHICS
The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

Image credit: Karsten Winegeart / Unsplash Continue reading

Posted in Human Robots

#437872 AlphaFold Proves That AI Can Crack ...

Any successful implementation of artificial intelligence hinges on asking the right questions in the right way. That’s what the British AI company DeepMind (a subsidiary of Alphabet) accomplished when it used its neural network to tackle one of biology’s grand challenges, the protein-folding problem. Its neural net, known as AlphaFold, was able to predict the 3D structures of proteins based on their amino acid sequences with unprecedented accuracy.

AlphaFold’s predictions at the 14th Critical Assessment of protein Structure Prediction (CASP14) were accurate to within an atom’s width for most of the proteins. The competition consisted of blindly predicting the structure of proteins that have only recently been experimentally determined—with some still awaiting determination.

Called the building blocks of life, proteins consist of 20 different amino acids in various combinations and sequences. A protein's biological function is tied to its 3D structure. Therefore, knowledge of the final folded shape is essential to understanding how a specific protein works—such as how they interact with other biomolecules, how they may be controlled or modified, and so on. “Being able to predict structure from sequence is the first real step towards protein design,” says Janet M. Thornton, director emeritus of the European Bioinformatics Institute. It also has enormous benefits in understanding disease-causing pathogens. For instance, at the moment only about 18 of the 26 proteins in the SARS-CoV-2 virus are known.

Predicting a protein’s 3D structure is a computational nightmare. In 1969 Cyrus Levinthal estimated that there are 10300 possible conformational combinations for a single protein, which would take longer than the age of the known universe to evaluate by brute force calculation. AlphaFold can do it in a few days.

As scientific breakthroughs go, AlphaFold’s discovery is right up there with the likes of James Watson and Francis Crick’s DNA double-helix model, or, more recently, Jennifer Doudna and Emmanuelle Charpentier’s CRISPR-Cas9 genome editing technique.

How did a team that just a few years ago was teaching an AI to master a 3,000-year-old game end up training one to answer a question plaguing biologists for five decades? That, says Briana Brownell, data scientist and founder of the AI company PureStrategy, is the beauty of artificial intelligence: The same kind of algorithm can be used for very different things.

“Whenever you have a problem that you want to solve with AI,” she says, “you need to figure out how to get the right data into the model—and then the right sort of output that you can translate back into the real world.”

DeepMind’s success, she says, wasn’t so much a function of picking the right neural nets but rather “how they set up the problem in a sophisticated enough way that the neural network-based modeling [could] actually answer the question.”

AlphaFold showed promise in 2018, when DeepMind introduced a previous iteration of their AI at CASP13, achieving the highest accuracy among all participants. The team had trained its to model target shapes from scratch, without using previously solved proteins as templates.

For 2020 they deployed new deep learning architectures into the AI, using an attention-based model that was trained end-to-end. Attention in a deep learning network refers to a component that manages and quantifies the interdependence between the input and output elements, as well as between the input elements themselves.

The system was trained on public datasets of the approximately 170,000 known experimental protein structures in addition to databases with protein sequences of unknown structures.

“If you look at the difference between their entry two years ago and this one, the structure of the AI system was different,” says Brownell. “This time, they’ve figured out how to translate the real world into data … [and] created an output that could be translated back into the real world.”

Like any AI system, AlphaFold may need to contend with biases in the training data. For instance, Brownell says, AlphaFold is using available information about protein structure that has been measured in other ways. However, there are also many proteins with as yet unknown 3D structures. Therefore, she says, a bias could conceivably creep in toward those kinds of proteins that we have more structural data for.

Thornton says it’s difficult to predict how long it will take for AlphaFold’s breakthrough to translate into real-world applications.

“We only have experimental structures for about 10 per cent of the 20,000 proteins [in] the human body,” she says. “A powerful AI model could unveil the structures of the other 90 per cent.”

Apart from increasing our understanding of human biology and health, she adds, “it is the first real step toward… building proteins that fulfill a specific function. From protein therapeutics to biofuels or enzymes that eat plastic, the possibilities are endless.” Continue reading

Posted in Human Robots