Tag Archives: display
#435765 The Four Converging Technologies Giving ...
How each of us sees the world is about to change dramatically.
For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.
The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.
Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.
Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.
As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.
In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.
A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.
It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)
However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.
Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.
The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.
In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.
In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.
Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.
(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.
Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.
With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.
Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.
And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.
Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.
After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.
And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.
As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”
Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.
Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.
(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.
To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).
In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.
With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.
To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.
For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.
Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.
And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.
Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).
Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.
While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.
(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.
A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.
Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”
Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.
In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.
And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.
On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.
Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.
The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.
Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.
Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.
And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.
As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.
Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.
Share this with your friends, especially if they are interested in any of the areas outlined above.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.
This article originally appeared on Diamandis.com
Image Credit: Funky Focus / Pixabay Continue reading →
#435681 Video Friday: This NASA Robot Uses ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Let us know if you have suggestions for next week, and enjoy today’s videos.
Robots can land on the Moon and drive on Mars, but what about the places they can’t reach? Designed by engineers as NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff, scanning the rock for ancient fossils from the sea that once filled the area.
The LEMUR project has since concluded, but it helped lead to a new generation of walking, climbing and crawling robots. In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could discover similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds.
[ NASA ]
This video demonstrates the autonomous footstep planning developed by IHMC. Robots in this video are the Atlas humanoid robot (DRC version) and the NASA Valkyrie. The operator specifies a goal location in the world, which is modeled as planar regions using the robot’s perception sensors. The planner then automatically computes the necessary steps to reach the goal using a Weighted A* algorithm. The algorithm does not reject footholds that have a certain amount of support, but instead modifies them after the plan is found to try and increase that support area.
Currently, narrow terrain has a success rate of about 50%, rough terrain is about 90%, whereas flat ground is near 100%. We plan on increasing planner speed and the ability to plan through mazes and to unseen goals by including a body-path planner as the first step. Control, Perception, and Planning algorithms by IHMC Robotics.
[ IHMC ]
I’ve never really been able to get into watching people play poker, but throw an AI from CMU and Facebook into a game of no-limit Texas hold’em with five humans, and I’m there.
[ Facebook ]
In this video, Cassie Blue is navigating autonomously. Right now, her world is very small, the Wavefield at the University of Michigan, where she is told to turn left at intersections. You’re right, that is not a lot of independence, but it’s a first step away from a human and an RC controller!
Using a RealSense RGBD Camera, an IMU, and our version of an InEKF with contact factors, Cassie Blue is building a 3D semantic map in real time that identifies sidewalks, grass, poles, bicycles, and buildings. From the semantic map, occupancy and cost maps are built with the sidewalk identified as walk-able area and everything else considered as an obstacle. A planner then sets a goal to stay approximately 50 cm to the right of the sidewalk’s left edge and plans a path around obstacles and corners using D*. The path is translated into way-points that are achieved via Cassie Blue’s gait controller.
[ University of Michigan ]
Thanks Jesse!
Dave from HEBI Robotics wrote in to share some new actuators that are designed to get all kinds of dirty: “The R-Series takes HEBI’s X-Series to the next level, providing a sealed robotics solution for rugged, industrial applications and laying the groundwork for industrial users to address challenges that are not well met by traditional robotics. To prove it, we shot some video right in the Allegheny River here in Pittsburgh. Not a bad way to spend an afternoon :-)”
The R-Series Actuator is a full-featured robotic component as opposed to a simple servo motor. The output rotates continuously, requires no calibration or homing on boot-up, and contains a thru-bore for easy daisy-chaining of wiring. Modular in nature, R-Series Actuators can be used in everything from wheeled robots to collaborative robotic arms. They are sealed to IP67 and designed with a lightweight form factor for challenging field applications, and they’re packed with sensors that enable simultaneous control of position, velocity, and torque.
[ HEBI Robotics ]
Thanks Dave!
If your robot hands out karate chops on purpose, that’s great. If it hands out karate chops accidentally, maybe you should fix that.
COVR is short for “being safe around collaborative and versatile robots in shared spaces”. Our mission is to significantly reduce the complexity in safety certifying cobots. Increasing safety for collaborative robots enables new innovative applications, thus increasing production and job creation for companies utilizing the technology. Whether you’re an established company seeking to deploy cobots or an innovative startup with a prototype of a cobot related product, COVR will help you analyze, test and validate the safety for that application.
[ COVR ]
Thanks Anna!
EPFL startup Flybotix has developed a novel drone with just two propellers and an advanced stabilization system that allow it to fly for twice as long as conventional models. That fact, together with its small size, makes it perfect for inspecting hard-to-reach parts of industrial facilities such as ducts.
[ Flybotix ]
SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich, currently being tested using Automation and Robotics Laboratories (ARL) facilities at our technical centre in the Netherlands. The robot is being used to investigate the potential of ‘dynamic walking’ and jumping to get around in low gravity environments.
SpaceBok could potentially go up to 2 m high in lunar gravity, although such a height poses new challenges. Once it comes off the ground the legged robot needs to stabilise itself to come down again safely – like a mini-spacecraft. So, like a spacecraft. SpaceBok uses a reaction wheel to control its orientation.
[ ESA ]
A new video from GITAI showing progress on their immersive telepresence robot for space.
[ GITAI ]
Tech United’s HERO robot (a Toyota HSR) competed in the RoboCup@Home competition, and it had a couple of garbage-related hiccups.
[ Tech United ]
Even small drones are getting better at autonomous obstacle avoidance in cluttered environments at useful speeds, as this work from the HKUST Aerial Robotics Group shows.
[ HKUST ]
DelFly Nimbles now come in swarms.
[ DelFly Nimble ]
This is a very short video, but it’s a fairly impressive look at a Baxter robot collaboratively helping someone put a shirt on, a useful task for folks with disabilities.
[ Shibata Lab ]
ANYmal can inspect the concrete in sewers for deterioration by sliding its feet along the ground.
[ ETH Zurich ]
HUG is a haptic user interface for teleoperating advanced robotic systems as the humanoid robot Justin or the assistive robotic system EDAN. With its lightweight robot arms, HUG can measure human movements and simultaneously display forces from the distant environment. In addition to such teleoperation applications, HUG serves as a research platform for virtual assembly simulations, rehabilitation, and training.
[ DLR ]
This video about “image understanding” from CMU in 1979 (!) is amazing, and even though it’s long, you won’t regret watching until 3:30. Or maybe you will.
[ ARGOS (pdf) ]
Will Burrard-Lucas’ BeetleCam turned 10 this month, and in this video, he recounts the history of his little robotic camera.
[ BeetleCam ]
In this week’s episode of Robots in Depth, Per speaks with Gabriel Skantze from Furhat Robotics.
Gabriel Skantze is co-founder and Chief Scientist at Furhat Robotics and Professor in speech technology at KTH with a specialization in conversational systems. He has a background in research into how humans use spoken communication to interact.
In this interview, Gabriel talks about how the social robot revolution makes it necessary to communicate with humans in a human ways through speech and facial expressions. This is necessary as we expand the number of people that interact with robots as well as the types of interaction. Gabriel gives us more insight into the many challenges of implementing spoken communication for co-bots, where robots and humans work closely together. They need to communicate about the world, the objects in it and how to handle them. We also get to hear how having an embodied system using the Furhat robot head helps the interaction between humans and the system.
[ Robots in Depth ] Continue reading →
#435660 Toyota Research Developing New ...
With the Olympics taking place next year in Japan, Toyota is (among other things) stepping up its robotics game to help provide “mobility for all.” We know that Toyota’s HSR will be doing work there, along with a few other mobile systems, but the Toyota Research Institute (TRI) has just announced a new telepresence robot called the T-TR1, featuring an absolutely massive screen designed to give you a near-lifesize virtual presence.
T-TR1 is a virtual mobility/tele-presence robot developed by Toyota Research Institute in the United States. It is equipped with a camera atop a large, near-lifesize display.
By projecting an image of a user from a remote location, the robot will help that person feel more physically present at the robot’s location.
With T-TR1, Toyota will give people that are physically unable to attend the events such as the Games a chance to virtually attend, with an on-screen presence capable of conversation between the two locations.
TRI isn’t ready to share much more detail on this system yet (we asked, of course), but we can infer some things from the video and the rest of the info that’s out there. For example, that ball on top is a 360-degree camera (that looks a lot like an Insta360 Pro), giving the remote user just as good of an awareness of their surroundings as they would if they were there in person. There are multiple 3D-sensing systems, including at least two depth cameras plus a lidar at the base. It’s not at all clear whether the robot is autonomous or semi-autonomous (using the sensors for automated obstacle avoidance, say), and since the woman on the other end of the robot does not seem to be controlling it at all for the demo, it’s hard to make an educated guess about the level of autonomy, or even how it’s supposed to be controlled.
We really like that enormous screen—despite the fact that telepresence now requires pants. It adds to the embodiment that makes independent telepresence robots useful.
We really like that enormous screen—despite the fact that telepresence now requires pants. It adds to the embodiment that makes independent telepresence robots useful. It’s also nice that the robot can move fast enough to keep up a person walking briskly. Hopefully, it’s safe for it to move at that speed in an environment more realistic than a carpeted, half-empty conference room, although it’ll probably have to leverage all of those sensors to do so. The other challenge for the T-TR1 will be bandwidth—even assuming that all of the sensor data processing and stuff is done on-robot, 360 cameras are huge bandwidth hogs, plus there’s the primary (presumably high quality) feed from the main camera, and then the video of the user coming the other way. It’s a lot of data in a very latency-sensitive application, and it’ll presumably be operating in places where connectivity is going to be a challenge due to crowds. This has always been a problem for telepresence robots—no matter how amazing your robot is, the experience will often for better or worse be defined by Internet connections that you may have no control over.
We should emphasize that Toyota has only released the bare minimum of information about the T-TR1, although we’re told that we can expect more as the 2020 Olympics approach: opening ceremonies are one year from today.
[ TRI ] Continue reading →
#435070 5 Breakthroughs Coming Soon in Augmented ...
Convergence is accelerating disruption… everywhere! Exponential technologies are colliding into each other, reinventing products, services, and industries.
In this third installment of my Convergence Catalyzer series, I’ll be synthesizing key insights from my annual entrepreneurs’ mastermind event, Abundance 360. This five-blog series looks at 3D printing, artificial intelligence, VR/AR, energy and transportation, and blockchain.
Today, let’s dive into virtual and augmented reality.
Today’s most prominent tech giants are leaping onto the VR/AR scene, each driving forward new and upcoming product lines. Think: Microsoft’s HoloLens, Facebook’s Oculus, Amazon’s Sumerian, and Google’s Cardboard (Apple plans to release a headset by 2021).
And as plummeting prices meet exponential advancements in VR/AR hardware, this burgeoning disruptor is on its way out of the early adopters’ market and into the majority of consumers’ homes.
My good friend Philip Rosedale is my go-to expert on AR/VR and one of the foremost creators of today’s most cutting-edge virtual worlds. After creating the virtual civilization Second Life in 2013, now populated by almost 1 million active users, Philip went on to co-found High Fidelity, which explores the future of next-generation shared VR.
In just the next five years, he predicts five emerging trends will take hold, together disrupting major players and birthing new ones.
Let’s dive in…
Top 5 Predictions for VR/AR Breakthroughs (2019-2024)
“If you think you kind of understand what’s going on with that tech today, you probably don’t,” says Philip. “We’re still in the middle of landing the airplane of all these new devices.”
(1) Transition from PC-based to standalone mobile VR devices
Historically, VR devices have relied on PC connections, usually involving wires and clunky hardware that restrict a user’s field of motion. However, as VR enters the dematerialization stage, we are about to witness the rapid rise of a standalone and highly mobile VR experience economy.
Oculus Go, the leading standalone mobile VR device on the market, requires only a mobile app for setup and can be transported anywhere with WiFi.
With a consumer audience in mind, the 32GB headset is priced at $200 and shares an app ecosystem with Samsung’s Gear VR. While Google Daydream are also standalone VR devices, they require a docked mobile phone instead of the built-in screen of Oculus Go.
In the AR space, Lenovo’s standalone Microsoft’s HoloLens 2 leads the way in providing tetherless experiences.
Freeing headsets from the constraints of heavy hardware will make VR/AR increasingly interactive and transportable, a seamless add-on whenever, wherever. Within a matter of years, it may be as simple as carrying lightweight VR goggles wherever you go and throwing them on at a moment’s notice.
(2) Wide field-of-view AR displays
Microsoft’s HoloLens 2 leads the AR industry in headset comfort and display quality. The most significant issue with their prior version was the limited rectangular field of view (FOV).
By implementing laser technology to create a microelectromechanical systems (MEMS) display, however, HoloLens 2 can position waveguides in front of users’ eyes, directed by mirrors. Subsequently enlarging images can be accomplished by shifting the angles of these mirrors. Coupled with a 47 pixel per degree resolution, HoloLens 2 has now doubled its predecessor’s FOV. Microsoft anticipates the release of its headset by the end of this year at a $3,500 price point, first targeting businesses and eventually rolling it out to consumers.
Magic Leap provides a similar FOV but with lower resolution than the HoloLens 2. The Meta 2 boasts an even wider 90-degree FOV, but requires a cable attachment. The race to achieve the natural human 120-degree horizontal FOV continues.
“The technology to expand the field of view is going to make those devices much more usable by giving you bigger than a small box to look through,” Rosedale explains.
(3) Mapping of real world to enable persistent AR ‘mirror worlds’
‘Mirror worlds’ are alternative dimensions of reality that can blanket a physical space. While seated in your office, the floor beneath you could dissolve into a calm lake and each desk into a sailboat. In the classroom, mirror worlds would convert pencils into magic wands and tabletops into touch screens.
Pokémon Go provides an introductory glimpse into the mirror world concept and its massive potential to unite people in real action.
To create these mirror worlds, AR headsets must precisely understand the architecture of the surrounding world. Rosedale predicts the scanning accuracy of devices will improve rapidly over the next five years to make these alternate dimensions possible.
(4) 5G mobile devices reduce latency to imperceptible levels
Verizon has already launched 5G networks in Minneapolis and Chicago, compatible with the Moto Z3. Sprint plans to follow with its own 5G launch in May. Samsung, LG, Huawei, and ZTE have all announced upcoming 5G devices.
“5G is rolling out this year and it’s going to materially affect particularly my work, which is making you feel like you’re talking to somebody else directly face to face,” explains Rosedale. “5G is critical because currently the cell devices impose too much delay, so it doesn’t feel real to talk to somebody face to face on these devices.”
To operate seamlessly from anywhere on the planet, standalone VR/AR devices will require a strong 5G network. Enhancing real-time connectivity in VR/AR will transform the communication methods of tomorrow.
(5) Eye-tracking and facial expressions built in for full natural communication
Companies like Pupil Labs and Tobii provide eye tracking hardware add-ons and software to VR/AR headsets. This technology allows for foveated rendering, which renders a given scene in high resolution only in the fovea region, while the peripheral regions appear in lower resolution, conserving processing power.
As seen in the HoloLens 2, eye tracking can also be used to identify users and customize lens widths to provide a comfortable, personalized experience for each individual.
According to Rosedale, “The fundamental opportunity for both VR and AR is to improve human communication.” He points out that current VR/AR headsets miss many of the subtle yet important aspects of communication. Eye movements and microexpressions provide valuable insight into a user’s emotions and desires.
Coupled with emotion-detecting AI software, such as Affectiva, VR/AR devices might soon convey much more richly textured and expressive interactions between any two people, transcending physical boundaries and even language gaps.
Final Thoughts
As these promising trends begin to transform the market, VR/AR will undoubtedly revolutionize our lives… possibly to the point at which our virtual worlds become just as consequential and enriching as our physical world.
A boon for next-gen education, VR/AR will empower youth and adults alike with holistic learning that incorporates social, emotional, and creative components through visceral experiences, storytelling, and simulation. Traveling to another time, manipulating the insides of a cell, or even designing a new city will become daily phenomena of tomorrow’s classrooms.
In real estate, buyers will increasingly make decisions through virtual tours. Corporate offices might evolve into spaces that only exist in ‘mirror worlds’ or grow virtual duplicates for remote workers.
In healthcare, accuracy of diagnosis will skyrocket, while surgeons gain access to digital aids as they conduct life-saving procedures. Or take manufacturing, wherein training and assembly will become exponentially more efficient as visual cues guide complex tasks.
In the mere matter of a decade, VR and AR will unlock limitless applications for new and converging industries. And as virtual worlds converge with AI, 3D printing, computing advancements and beyond, today’s experience economies will explode in scale and scope. Prepare yourself for the exciting disruption ahead!
Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements, and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.
Image Credit: Mariia Korneeva / Shutterstock.com Continue reading →
#435066 Does artificial intelligence deserve the ...
In the HBO show Westworld, robots designed to display emotion, feel pain, and die like humans populate a sprawling western-style theme park for wealthy guests who pay to act out their fantasies. As the show progresses, and the robots learn more about the world in which they live, they begin to realize that they are the playthings of the person who programmed them. Continue reading →