Tag Archives: disasters

#439100 Video Friday: Robotic Eyeball Camera

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

What if seeing devices looked like us? Eyecam is a prototype exploring the potential future design of sensing devices. Eyecam is a webcam shaped like a human eye that can see, blink, look around and observe us.

And it's open source, so you can build your own!

[ Eyecam ]

Looks like Festo will be turning some of its bionic robots into educational kits, which is a pretty cool idea.

[ Bionics4Education ]

Underwater soft robots are challenging to model and control because of their high degrees of freedom and their intricate coupling with water. In this paper, we present a method that leverages the recent development in differentiable simulation coupled with a differentiable, analytical hydrodynamic model to assist with the modeling and control of an underwater soft robot. We apply this method to Starfish, a customized soft robot design that is easy to fabricate and intuitive to manipulate.

[ MIT CSAIL ]

Rainbow Robotics, the company who made HUBO, has a new collaborative robot arm.

[ Rainbow Robotics ]

Thanks Fan!

We develop an integrated robotic platform for advanced collaborative robots and demonstrates an application of multiple robots collaboratively transporting an object to different positions in a factory environment. The proposed platform integrates a drone, a mobile manipulator robot, and a dual-arm robot to work autonomously, while also collaborating with a human worker. The platform also demonstrates the potential of a novel manufacturing process, which incorporates adaptive and collaborative intelligence to improve the efficiency of mass customization for the factory of the future.

[ Paper ]

Thanks Poramate!

In Sevastopol State University the team of the Laboratory of Underwater Robotics and Control Systems and Research and Production Association “Android Technika” performed tests of an underwater anropomorphic manipulator robot.

[ Sevastopol State ]

Thanks Fan!

Taiwanese company TCI Gene created a COVID test system based on their fully automated and enclosed gene testing machine QVS-96S. The system includes two ABB robots and carries out 1800 tests per day, operating 24/7. Every hour 96 virus samples tests are made with an accuracy of 99.99%.

[ ABB ]

A short video showing how a Halodi Robotics can be used in a commercial guarding application.

[ Halodi ]

During the past five years, under the NASA Early Space Innovations program, we have been developing new design optimization methods for underactuated robot hands, aiming to achieve versatile manipulation in highly constrained environments. We have prototyped hands for NASA’s Astrobee robot, an in-orbit assistive free flyer for the International Space Station.

[ ROAM Lab ]

The new, improved OTTO 1500 is a workhorse AMR designed to move heavy payloads through demanding environments faster than any other AMR on the market, with zero compromise to safety.

[ ROAM Lab ]

Very, very high performance sensing and actuation to pull this off.

[ Ishikawa Group ]

We introduce a conversational social robot designed for long-term in-home use to help with loneliness. We present a novel robot behavior design to have simple self-reflection conversations with people to improve wellness, while still being feasible, deployable, and safe.

[ HCI Lab ]

We are one of the 5 winners of the Start-up Challenge. This video illustrates what we achieved during the Swisscom 5G exploration week. Our proof-of-concept tele-excavation system is composed of a Menzi Muck M545 walking excavator automated & customized by Robotic Systems Lab and IBEX motion platform as the operator station. The operator and remote machine are connected for the first time via a 5G network infrastructure which was brought to our test field by Swisscom.

[ RSL ]

This video shows LOLA balancing on different terrain when being pushed in different directions. The robot is technically blind, not using any camera-based or prior information on the terrain (hard ground is assumed).

[ TUM ]

Autonomous driving when you cannot see the road at all because it's buried in snow is some serious autonomous driving.

[ Norlab ]

A hierarchical and robust framework for learning bipedal locomotion is presented and successfully implemented on the 3D biped robot Digit. The feasibility of the method is demonstrated by successfully transferring the learned policy in simulation to the Digit robot hardware, realizing sustained walking gaits under external force disturbances and challenging terrains not included during the training process.

[ OSU ]

This is a video summary of the Center for Robot-Assisted Search and Rescue's deployments under the direction of emergency response agencies to more than 30 disasters in five countries from 2001 (9/11 World Trade Center) to 2018 (Hurricane Michael). It includes the first use of ground robots for a disaster (WTC, 2001), the first use of small unmanned aerial systems (Hurricane Katrina 2005), and the first use of water surface vehicles (Hurricane Wilma, 2005).

[ CRASAR ]

In March, a team from the Oxford Robotics Institute collected a week of epic off-road driving data, as part of the Sense-Assess-eXplain (SAX) project.

[ Oxford Robotics ]

As a part of the AAAI 2021 Spring Symposium Series, HEBI Robotics was invited to present an Industry Talk on the symposium's topic: Machine Learning for Mobile Robot Navigation in the Wild. Included in this presentation was a short case study on one of our upcoming mobile robots that is being designed to successfully navigate unstructured environments where today's robots struggle.

[ HEBI Robotics ]

Thanks Hardik!

This Lockheed Martin Robotics Seminar is from Chad Jenkins at the University of Michigan, on “Semantic Robot Programming… and Maybe Making the World a Better Place.”

I will present our efforts towards accessible and general methods of robot programming from the demonstrations of human users. Our recent work has focused on Semantic Robot Programming (SRP), a declarative paradigm for robot programming by demonstration that builds on semantic mapping. In contrast to procedural methods for motion imitation in configuration space, SRP is suited to generalize user demonstrations of goal scenes in workspace, such as for manipulation in cluttered environments. SRP extends our efforts to crowdsource robot learning from demonstration at scale through messaging protocols suited to web/cloud robotics. With such scaling of robotics in mind, prospects for cultivating both equal opportunity and technological excellence will be discussed in the context of broadening and strengthening Title IX and Title VI.

[ UMD ] Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots

#437687 Video Friday: Bittle Is a Palm-Sized ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.

Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.

[ Kickstarter ]

Thanks Rz!

I still maintain that Stickybot was one of the most elegantly designed robots ever.

[ Stanford ]

With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.

[ PAL Robotics ]

Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.

Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.

Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.

Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.

[ Energy Robotics ]

Thanks Stefan!

Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.

[ DrGuero ]

World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.

[ Extend Robotics ]

The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:

[ Robocon ]

Sphero has managed to pack an entire Sphero into a much smaller sphere.

[ Sphero ]

Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.

[ Squishy Robotics ]

Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.

[ AU AF ]

Impressive what the Ghost Robotics V60 can do without any vision sensors on it.

[ Ghost Robotics ]

Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.

[ Yumi ]

For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.

[ MIT ]

This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.

[ University of Guleph ]

Australia has one of these now, should the rest of us panic?

[ Boeing ]

Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.

[ Torc Robotics ] Continue reading

Posted in Human Robots

#437564 How We Won the DARPA SubT Challenge: ...

This is a guest post. The views expressed here are those of the authors and do not necessarily represent positions of IEEE or its organizational units.​

“Do you smell smoke?” It was three days before the qualification deadline for the Virtual Tunnel Circuit of the DARPA Subterranean Challenge Virtual Track, and our team was barrelling through last-minute updates to our robot controllers in a small conference room at the Michigan Tech Research Institute (MTRI) offices in Ann Arbor, Mich. That’s when we noticed the smell. We’d assumed that one of the benefits of entering a virtual disaster competition was that we wouldn’t be exposed to any actual disasters, but equipment in the basement of the building MTRI shares had started to smoke. We evacuated. The fire department showed up. And as soon as we could, the team went back into the building, hunkered down, and tried to make up for the unexpected loss of several critical hours.

Team BARCS joins the SubT Virtual Track
The smoke incident happened more than a year after we first learned of the DARPA Subterranean Challenge. DARPA announced SubT early in 2018, and at that time, we were interested in building internal collaborations on multi-agent autonomy problems, and SubT seemed like the perfect opportunity. Though a few of us had backgrounds in robotics, the majority of our team was new to the field. We knew that submitting a proposal as a largely non-traditional robotics team from an organization not known for research in robotics was a risk. However, the Virtual Track gave us the opportunity to focus on autonomy and multi-agent teaming strategies, areas requiring skill in asynchronous computing and sensor data processing that are strengths of our Institute. The prevalence of open source code, small inexpensive platforms, and customizable sensors has provided the opportunity for experts in fields other than robotics to apply novel approaches to robotics problems. This is precisely what makes the Virtual Track of SubT appealing to us, and since starting SubT, autonomy has developed into a significant research thrust for our Institute. Plus, robots are fun!

After many hours of research, discussion, and collaboration, we submitted our proposal early in 2018. And several months later, we found out that we had won a contract and became a funded team (Team BARCS) in the SubT Virtual Track. Now we needed to actually make our strategy work for the first SubT Tunnel Circuit competition, taking place in August of 2019.

Building a team of virtual robots
A natural approach to robotics competitions like SubT is to start with the question of “what can X-type robot do” and then build a team and strategy around individual capabilities. A particular challenge for the SubT Virtual Track is that we can’t design our own systems; instead, we have to choose from a predefined set of simulated robots and sensors that DARPA provides, based on the real robots used by Systems Track teams. Our approach is to look at what a team of robots can do together, determining experimentally what the best team configuration is for each environment. By the final competition, ideally we will be demonstrating the value of combining platforms across multiple Systems Track teams into a single Virtual Track team. Each of the robot configurations in the competition has an associated cost, and team size is constrained by a total cost. This provides another impetus for limiting dependence on complex sensor packages, though our ranging preference is 3D lidar, which is the most expensive sensor!

Image: Michigan Tech Research Institute

The teams can rely on realistic physics and sensors but they start off with no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for their simulated robots.

One of the frequent questions we receive about the Virtual Track is if it’s like a video game. While it may look similar on the surface, everything under the hood in a video game is designed to service the game narrative and play experience, not require novel research in AI and autonomy. The purpose of simulations, on the other hand, is to include full physics and sensor models (including noise and errors) to provide a testbed for prototyping and developing solutions to those real-world challenges. We are starting with realistic physics and sensors but no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for our simulated robots.

Though the simulation is more like real life than a video game, it is not real life. Due to occasional software bugs, there are still non-physical events, like the robots falling through an invisible hole in the world or driving through a rock instead of over it or flipping head over heels when driving over a tiny lip between world tiles. These glitches, while sometimes frustrating, still allow the SubT Virtual platform to be realistic enough to support rapid prototyping of controller modules that will transition straightforwardly onto hardware, closing the loop between simulation and real-world robots.

Full autonomy for DARPA-hard scenarios
The Virtual Track requirement that the robotic agents be fully autonomous, rather than have a human supervisor, is a significant distinction between the Systems and Virtual Tracks of SubT. Our solutions must be hardened against software faults caused by things like missing and bad data since our robots can’t turn to us for help. In order for a team of robots to complete this objective reliably with no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to autonomously identify and manage faults and failures anywhere in the control chain.

The communications limitations in subterranean environments (both real and virtual) mean that we need to keep the amount of information shared between robots low, while making the usability of that information for joint decision-making high. This goal has guided much of our design for autonomous navigation and joint search strategy for our team. For example, instead of sharing the full SLAM map of the environment, our agents only share a simplified graphical representation of the space, along with data about frontiers it has not yet explored, and are able to merge its information with the graphs generated by other agents. The merged graph can then be used for planning and navigation without having full knowledge of the detailed 3D map.

The Virtual Track requires that the robotic agents be fully autonomous. With no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to identify and manage faults and failures anywhere in the control chain.

Since the objective of the SubT program is to advance the state-of-the-art in rapid autonomous exploration and mapping of subterranean environments by robots, our first software design choices focused on the mapping task. The SubT virtual environments are sufficiently rich as to provide interesting problems in building so-called costmaps that accurately separate obstructions that are traversable (like ramps) from legitimately impassible obstructions. An extra complication we discovered in the first course, which took place in mining tunnels, was that the angle of the lowest beam of the lidar was parallel to the down ramps in the tunnel environment, so they could not “see” the ground (or sometimes even obstructions on the ramp) until they got close enough to the lip of the ramp to receive lidar reflections off the bottom of the ramp. In this case, we had to not only change the costmap to convince the robot that there was safe ground to reach over the lip of the ramp, but also had to change the path planner to get the robot to proceed with caution onto the top of the ramp in case there were previously unseen obstructions on the ramp.

In addition to navigation in the costmaps, the robot must be able to generate its own goals to navigate to. This is what produces exploratory behavior when there is no map to start with. SLAM is used to generate a detailed map of the environment explored by a single robot—the space it has probed with its sensors. From the sensor data, we are able to extract information about the interior space of the environment while looking for holes in the data, to determine things like whether the current tunnel continues or ends, or how many tunnels meet at an intersection. Once we have some understanding of the interior space, we can place navigation goals in that space. These goals naturally update as the robot traverses the tunnel, allowing the entire space to be explored.

Sending our robots into the virtual unknown
The solutions for the Virtual Track competitions are tested by DARPA in multiple sequestered runs across many environments for each Circuit in the month prior to the Systems Track competition. We must wait until the joint award ceremony at the conclusion of the Systems Track to find out the results, and we are completely in the dark about placings before the awards are announced. It’s nerve-wracking! The challenges of the worlds used in the Circuit events are also hand-designed, so features of the worlds we use for development could be combined in ways we have not anticipated—it’s always interesting to see what features were prioritized after the event. We test everything in our controllers well enough to feel confident that we at least are submitting something reasonably stable and broadly capable, and once the solution is in, we can’t really do anything other than “let go” and get back to work on the next phase of development. Maybe it’s somewhat like sending your kid to college: “we did our best to prepare you for this world, little bots. Go do good.”

Image: Michigan Tech Research Institute

The first SubT competition was the Tunnel Circuit, featuring a labyrinthine environment that simulated human-engineered tunnels, including hazards such as vertical shafts and rubble.

The first competition was the Tunnel Circuit, in October 2019. This environment models human-engineered tunnels. Two substantial challenges in this environment were vertical shafts and rubble. Our team accrued 21 points over 15 competition runs in five separate tunnel environments for a second place finish, behind Team Coordinated Robotics.

The next phase of the SubT virtual competition was the Urban Circuit. Much of the difference between our Tunnel and Urban Circuit results came down to thorough testing to identify failure modes and implementations of checks and data filtering for fault tolerance. For example, in the SLAM nodes run by a single robot, the coordinates of the most recent sensor data are changed multiple times during processing and integration into the current global 3D map of the “visited” environment stored by that robot. If there is lag in IMU or clock data, the observation may be temporarily registered at a default location that is very far from the actual position. Since most of our decision processes for exploration are downstream from SLAM, this can cause faulty or impossible goals to be generated, and the robots then spend inordinate amounts of time trying to drive through walls. We updated our method to add a check to see if the new map position has jumped a far distance from the prior map position, and if so, we threw that data out.

Image: Michigan Tech Research Institute

In open spaces like the rooms in the Urban circuit, we adjusted our approach to exploration through graph generation to allow the robots to accurately identify viable routes while helping to prevent forays off platform edges.

Our approach to exploration through graph generation based on identification of interior spaces allowed us to thoroughly explore the centers of rooms, although we did have to make some changes from the Tunnel circuit to achieve that. In the Tunnel circuit, we used a simplified graph of the environment based on landmarks like intersections. The advantage of this approach is that it is straightforward for two robots to compare how the graphs of the space they explored individually overlap. In open spaces like the rooms in the Urban circuit, we chose to instead use a more complex, less directly comparable graph structure based on the individual robot’s trajectory. This allowed the robots to accurately identify viable routes between features like subway station platforms and subway tracks, as well as to build up the navigation space for room interiors, while helping to prevent forays off the platform edges. Frontier information is also integrated into the graph, providing a uniform data structure for both goal selection and route planning.

The results are in!
The award ceremony for the Urban Circuit was held concurrently with the Systems Track competition awards this past February in Washington State. We sent a team representative to participate in the Technical Interchange Meeting and present the approach for our team, and the rest of us followed along from our office space on the DARPAtv live stream. While we were confident in our solution, we had also been tracking the online leaderboard and knew our competitors were going to be submitting strong solutions. Since the competition environments are hand-designed, there are always novel challenges that could be presented in these environments as well. We knew we would put up a good fight, but it was very exciting to see BARCS appear in first place!

Any time we implement a new module in our control system, there is a lot of parameter tuning that has to happen to produce reliably good autonomous behavior. In the Urban Circuit, we did not sufficiently test some parameter values in our exploration modules. The effect of this was that the robots only chose to go down small hallways after they explored everything else in their environment, which meant very often they ran out of time and missed a lot of small rooms. This may be the biggest source of lost points for us in the Urban Circuit. One of our major plans going forward from the Urban Circuit is to integrate more sophisticated node selection methods, which can help our robots more intelligently prioritize which frontier nodes to visit. By going through all three Circuit challenges, we will learn how to appropriately add weights to the frontiers based on features of the individual environments. For the Final Challenge, when all three Circuit environments will be combined into large systems, we plan to implement adaptive controllers that will identify their environments and use the appropriate optimized parameters for that environment. In this way, we expect our agents to be able to (for example) prioritize hallways and other small spaces in Urban environments, and perhaps prioritize large openings over small in the Cave environments, if the small openings end up being treacherous overall.

Next for our team: Cave Circuit
Coming up next for Team BARCS is the Virtual Cave Circuit. We are in the middle of testing our hypothesis that our controller will transition from UGVs to UAVs and developing strategies for refining our solution to handle Cave Circuit environmental hazards. The UAVs have a shorter battery life than the UGVs, so executing a joint exploration strategy will also be a high priority for this event, as will completing our work on graph sharing and merging, which will give our robot teams more sophisticated options for navigation and teamwork. We’re reaching a threshold in development where we can start increasing the “smarts” of the robots, which we anticipate will be critical for the final competition, where all of the challenges of SubT will be combined to push the limits of innovation. The Cave Circuit will also have new environmental challenges to tackle: dynamic features such as rock falls have been added, which will block previously accessible passages in the cave environment. We think our controllers are well-poised to handle this new challenge, and we’re eager to find out if that’s the case.

As of now, the biggest worries for us are time and team composition. The Cave Circuit deadline has been postponed to October 15 due to COVID-19 delays, with the award ceremony in mid-November, but there have also been several very compelling additions to the testbed that we would like to experiment with before submission, including droppable networking ‘breadcrumbs’ and new simulated platforms. There are design trade-offs when balancing general versus specialist approaches to the controllers for these robots—since we are adding UAVs to our team for the first time, there are new decisions that will have to be made. For example, the UAVs can ascend into vertical spaces, but only have a battery life of 20 minutes. The UGVs by contrast have 90 minute battery life. One of our strategies is to do an early return to base with one or more agents to buy down risk on making any artifact reports at all for the run, hedging against our other robots not making it back in time, a lesson learned from the Tunnel Circuit. Should a UAV take on this role, or is it better to have them explore deeper into the environment and instead report their artifacts to a UGV or network node, which comes with its own risks? Testing and experimentation to determine the best options takes time, which is always a worry when preparing for a competition! We also anticipate new competitors and stiffer competition all around.

Image: Michigan Tech Research Institute

Team BARCS has now a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021.

Going forward from the Cave Circuit, we will have a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021. What we are most excited about is increasing the level of intelligence of the agents in their teamwork and joint exploration of the environment. Since we will have (hopefully) built up robust approaches to handling each of the specific types of environments in the Tunnel, Urban, and Cave circuits, we will be aiming to push the limits on collaboration and efficiency among the agents in our team. We view this as a central research contribution of the Virtual Track to the Subterranean Challenge because intelligent, adaptive, multi-robot collaboration is an upcoming stage of development for integration of robots into our lives.

The Subterranean Challenge Virtual Track gives us a bridge for transitioning our more abstract research ideas and algorithms relevant to this degree of autonomy and collaboration onto physical systems, and exploring the tangible outcomes of implementing our work in the real world. And the next time there’s an incident in the basement of our building, the robots (and humans) of Team BARCS will be ready to respond.

Richard Chase, Ph.D., P.E., is a research scientist at Michigan Tech Research Institute (MTRI) and has 20 years of experience developing robotics and cyber physical systems in areas from remote sensing to autonomous vehicles. At MTRI, he works on a variety of topics such as swarm autonomy, human-swarm teaming, and autonomous vehicles. His research interests are the intersection of design, robotics, and embedded systems.

Sarah Kitchen is a Ph.D. mathematician working as a research scientist and an AI/Robotics focus area leader at MTRI. Her research interests include intelligent autonomous agents and multi-agent collaborative teams, as well as applications of autonomous robots to sensing systems.

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001118C0124 and is released under Distribution Statement (Approved for Public Release, Distribution Unlimited). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Continue reading

Posted in Human Robots

#436146 Video Friday: Kuka’s Robutt Is a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Kuka’s “robutt” can, according to the company, simulate “thousands of butts in the pursuit of durability and comfort.” Two of the robots are used at a Ford development center in Germany to evaluate new car seats. The tests are quite exhaustive, consisting of around 25,000 simulated sitting motions for each new seat design.” Or as Kuka puts it, “Pleasing all the butts on the planet is serious business.”

[ Kuka ]

Here’s a clever idea: 3D printing manipulators, and then using the 3D printer head to move those manipulators around and do stuff with them:

[ Paper ]

Two former soldiers performed a series of tests to see if the ONYX Exoskeleton gave them extra strength and endurance in difficult environments.

So when can I rent one of these to help me move furniture?

[ Lockheed ]

One of the defining characteristics of legged robots in general (and humanoid robots in particular) is the ability of walking on various types of terrain. In this video, we show our humanoid robot TORO walking dynamically over uneven (on grass outside the lab), rough (large gravel), and compliant terrain (a soft gym mattress). The robot can maintain its balance, even when the ground shifts rapidly under foot, such as when walking over gravel. This behaviour showcases the torque-control capability of quickly adapting the contact forces compared to position control methods.

An in-depth discussion of the current implementation is presented in the paper “Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control”.

[ DLR RMC ]

Tsuki is a ROS-enabled quadruped designed and built by Lingkang Zhang. It’s completely position controlled, with no contact sensors on the feet, or even an IMU.

It can even do flips!

[ Tsuki ]

Thanks Lingkang!

TRI CEO Dr. Gill Pratt presents TRI’s contributions to Toyota’s New “LQ” Concept Vehicle, which includes onboard artificial intelligence agent “Yui” and LQ’s automated driving technology.

[ TRI ]

Hooman Hedayati wrote in to share some work (presented at HRI this year) on using augmented reality to make drone teleoperation more intuitive. Get a virtual drone to do what you want first, and then the real drone will follow.

[ Paper ]

Thanks Hooman!

You can now order a Sphero RVR for $250. It’s very much not spherical, but it does other stuff, so we’ll give it a pass.

[ Sphero ]

The AI Gamer Q56 robot is an expert at whatever this game is, using AI plus actual physical control manipulation. Watch until the end!

[ Bandai Namco ]

We present a swarm of autonomous flying robots for the exploration of unknown environments. The tiny robots do not make maps of their environment, but deal with obstacles on the fly. In robotics, the algorithms for navigating like this are called “bug algorithms”. The navigation of the robots involves them first flying away from the base station and later finding their way back with the help of a wireless beacon.

[ MAVLab ]

Okay Soft Robotics you successfully and disgustingly convinced us that vacuum grippers should never be used for food handling. Yuck!

[ Soft Robotics ]

Beyond the asteroid belt are “fossils of planet formation” known as the Trojan asteroids. These primitive bodies share Jupiter’s orbit in two vast swarms, and may hold clues to the formation and evolution of our solar system. Now, NASA is preparing to explore the Trojan asteroids for the first time. A mission called Lucy will launch in 2021 and visit seven asteroids over the course of twelve years – one in the main belt and six in Jupiter’s Trojan swarms.

[ NASA ]

I’m not all that impressed by this concept car from Lexus except that it includes some kind of super-thin autonomous luggage-carrying drone.

The LF-30 Electrified also carries the ‘Lexus Airporter’ drone-technology support vehicle. Using autonomous control, the Lexus Airporter is capable of such tasks as independently transporting baggage from a household doorstep to the vehicle’s luggage area.

[ Lexus ]

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

Tech United Eindhoven is looking good for RoboCup@Home 2020.

[ Tech United ]

Penn engineers participated in the Subterranean (SubT) Challenge hosted by DARPA, the Defense Advanced Research Projects Agency. The goal of this Challenge is for teams to develop automated systems that can work in underground environments so they could be deployed after natural disasters or on dangerous search-and-rescue missions.

[ Team PLUTO ]

It’s BeetleCam vs White Rhinos in Kenya, and the White Rhinos don’t seem to mind at all.

[ Will Burrard-Lucas ] Continue reading

Posted in Human Robots