Tag Archives: different
#437477 If a Robot Is Conscious, Is It OK to ...
In the Star Trek: The Next Generation episode “The Measure of a Man,” Data, an android crew member of the Enterprise, is to be dismantled for research purposes unless Captain Picard can argue that Data deserves the same rights as a human being. Naturally the question arises: What is the basis upon which something has rights? What gives an entity moral standing?
The philosopher Peter Singer argues that creatures that can feel pain or suffer have a claim to moral standing. He argues that nonhuman animals have moral standing, since they can feel pain and suffer. Limiting it to people would be a form of speciesism, something akin to racism and sexism.
Without endorsing Singer’s line of reasoning, we might wonder if it can be extended further to an android robot like Data. It would require that Data can either feel pain or suffer. And how you answer that depends on how you understand consciousness and intelligence.
As real artificial intelligence technology advances toward Hollywood’s imagined versions, the question of moral standing grows more important. If AIs have moral standing, philosophers like me reason, it could follow that they have a right to life. That means you cannot simply dismantle them, and might also mean that people shouldn’t interfere with their pursuing their goals.
Two Flavors of Intelligence and a Test
IBM’s Deep Blue chess machine was successfully trained to beat grandmaster Gary Kasparov. But it could not do anything else. This computer had what’s called domain-specific intelligence.
On the other hand, there’s the kind of intelligence that allows for the ability to do a variety of things well. It is called domain-general intelligence. It’s what lets people cook, ski, and raise children—tasks that are related, but also very different.
Artificial general intelligence, AGI, is the term for machines that have domain-general intelligence. Arguably no machine has yet demonstrated that kind of intelligence. This summer, a startup called OpenAI released a new version of its Generative Pre-Training language model. GPT-3 is a natural language processing system, trained to read and write so that it can be easily understood by people.
It drew immediate notice, not just because of its impressive ability to mimic stylistic flourishes and put together plausible content, but also because of how far it had come from a previous version. Despite this impressive performance, GPT-3 doesn’t actually know anything beyond how to string words together in various ways. AGI remains quite far off.
Named after pioneering AI researcher Alan Turing, the Turing test helps determine when an AI is intelligent. Can a person conversing with a hidden AI tell whether it’s an AI or a human being? If he can’t, then for all practical purposes, the AI is intelligent. But this test says nothing about whether the AI might be conscious.
Two Kinds of Consciousness
There are two parts to consciousness. First, there’s the what-it’s-like-for-me aspect of an experience, the sensory part of consciousness. Philosophers call this phenomenal consciousness. It’s about how you experience a phenomenon, like smelling a rose or feeling pain.
In contrast, there’s also access consciousness. That’s the ability to report, reason, behave, and act in a coordinated and responsive manner to stimuli based on goals. For example, when I pass the soccer ball to my friend making a play on the goal, I am responding to visual stimuli, acting from prior training, and pursuing a goal determined by the rules of the game. I make the pass automatically, without conscious deliberation, in the flow of the game.
Blindsight nicely illustrates the difference between the two types of consciousness. Someone with this neurological condition might report, for example, that they cannot see anything in the left side of their visual field. But if asked to pick up a pen from an array of objects in the left side of their visual field, they can reliably do so. They cannot see the pen, yet they can pick it up when prompted—an example of access consciousness without phenomenal consciousness.
Data is an android. How do these distinctions play out with respect to him?
The Data Dilemma
The android Data demonstrates that he is self-aware in that he can monitor whether or not, for example, he is optimally charged or there is internal damage to his robotic arm.
Data is also intelligent in the general sense. He does a lot of distinct things at a high level of mastery. He can fly the Enterprise, take orders from Captain Picard and reason with him about the best path to take.
He can also play poker with his shipmates, cook, discuss topical issues with close friends, fight with enemies on alien planets, and engage in various forms of physical labor. Data has access consciousness. He would clearly pass the Turing test.
However, Data most likely lacks phenomenal consciousness—he does not, for example, delight in the scent of roses or experience pain. He embodies a supersized version of blindsight. He’s self-aware and has access consciousness—can grab the pen—but across all his senses he lacks phenomenal consciousness.
Now, if Data doesn’t feel pain, at least one of the reasons Singer offers for giving a creature moral standing is not fulfilled. But Data might fulfill the other condition of being able to suffer, even without feeling pain. Suffering might not require phenomenal consciousness the way pain essentially does.
For example, what if suffering were also defined as the idea of being thwarted from pursuing a just cause without causing harm to others? Suppose Data’s goal is to save his crewmate, but he can’t reach her because of damage to one of his limbs. Data’s reduction in functioning that keeps him from saving his crewmate is a kind of nonphenomenal suffering. He would have preferred to save the crewmate, and would be better off if he did.
In the episode, the question ends up resting not on whether Data is self-aware—that is not in doubt. Nor is it in question whether he is intelligent—he easily demonstrates that he is in the general sense. What is unclear is whether he is phenomenally conscious. Data is not dismantled because, in the end, his human judges cannot agree on the significance of consciousness for moral standing.
Should an AI Get Moral Standing?
Data is kind; he acts to support the well-being of his crewmates and those he encounters on alien planets. He obeys orders from people and appears unlikely to harm them, and he seems to protect his own existence. For these reasons he appears peaceful and easier to accept into the realm of things that have moral standing.
But what about Skynet in the Terminator movies? Or the worries recently expressed by Elon Musk about AI being more dangerous than nukes, and by Stephen Hawking on AI ending humankind?
Human beings don’t lose their claim to moral standing just because they act against the interests of another person. In the same way, you can’t automatically say that just because an AI acts against the interests of humanity or another AI it doesn’t have moral standing. You might be justified in fighting back against an AI like Skynet, but that does not take away its moral standing. If moral standing is given in virtue of the capacity to nonphenomenally suffer, then Skynet and Data both get it even if only Data wants to help human beings.
There are no artificial general intelligence machines yet. But now is the time to consider what it would take to grant them moral standing. How humanity chooses to answer the question of moral standing for nonbiological creatures will have big implications for how we deal with future AIs—whether kind and helpful like Data, or set on destruction, like Skynet.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Ico Maker / Shutterstock.com Continue reading
#437466 How Future AI Could Recognize a Kangaroo ...
AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.
For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?
A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.
Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.
It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.
LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?
The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).
“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.
If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.
The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.
To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.
The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.
Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.
While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.
One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.
LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.
Image Credit: pen_ash from Pixabay Continue reading
#437293 These Scientists Just Completed a 3D ...
Human brain maps are a dime a dozen these days. Maps that detail neurons in a certain region. Maps that draw out functional connections between those cells. Maps that dive deeper into gene expression. Or even meta-maps that combine all of the above.
But have you ever wondered: how well do those maps represent my brain? After all, no two brains are alike. And if we’re ever going to reverse-engineer the brain as a computer simulation—as Europe’s Human Brain Project is trying to do—shouldn’t we ask whose brain they’re hoping to simulate?
Enter a new kind of map: the Julich-Brain, a probabilistic map of human brains that accounts for individual differences using a computational framework. Rather than generating a static PDF of a brain map, the Julich-Brain atlas is also dynamic, in that it continuously changes to incorporate more recent brain mapping results. So far, the map has data from over 24,000 thinly sliced sections from 23 postmortem brains covering most years of adulthood at the cellular level. But the atlas can also continuously adapt to progress in mapping technologies to aid brain modeling and simulation, and link to other atlases and alternatives.
In other words, rather than “just another” human brain map, the Julich-Brain atlas is its own neuromapping API—one that could unite previous brain-mapping efforts with more modern methods.
“It is exciting to see how far the combination of brain research and digital technologies has progressed,” said Dr. Katrin Amunts of the Institute of Neuroscience and Medicine at Research Centre Jülich in Germany, who spearheaded the study.
The Old Dogma
The Julich-Brain atlas embraces traditional brain-mapping while also yanking the field into the 21st century.
First, the new atlas includes the brain’s cytoarchitecture, or how brain cells are organized. As brain maps go, these kinds of maps are the oldest and most fundamental. Rather than exploring how neurons talk to each other functionally—which is all the rage these days with connectome maps—cytoarchitecture maps draw out the physical arrangement of neurons.
Like a census, these maps literally capture how neurons are distributed in the brain, what they look like, and how they layer within and between different brain regions.
Because neurons aren’t packed together the same way between different brain regions, this provides a way to parse the brain into areas that can be further studied. When we say the brain’s “memory center,” the hippocampus, or the emotion center, the “amygdala,” these distinctions are based on cytoarchitectural maps.
Some may call this type of mapping “boring.” But cytoarchitecture maps form the very basis of any sort of neuroscience understanding. Like hand-drawn maps from early explorers sailing to the western hemisphere, these maps provide the brain’s geographical patterns from which we try to decipher functional connections. If brain regions are cities, then cytoarchitecture maps attempt to show trading or other “functional” activities that occur in the interlinking highways.
You might’ve heard of the most common cytoarchitecture map used today: the Brodmann map from 1909 (yup, that old), which divided the brain into classical regions based on the cells’ morphology and location. The map, while impactful, wasn’t able to account for brain differences between people. More recent brain-mapping technologies have allowed us to dig deeper into neuronal differences and divide the brain into more regions—180 areas in the cortex alone, compared with 43 in the original Brodmann map.
The new study took inspiration from that age-old map and transformed it into a digital ecosystem.
A Living Atlas
Work began on the Julich-Brain atlas in the mid-1990s, with a little help from the crowd.
The preparation of human tissue and its microstructural mapping, analysis, and data processing is incredibly labor-intensive, the authors lamented, making it impossible to do for the whole brain at high resolution in just one lab. To build their “Google Earth” for the brain, the team hooked up with EBRAINS, a shared computing platform set up by the Human Brain Project to promote collaboration between neuroscience labs in the EU.
First, the team acquired MRI scans of 23 postmortem brains, sliced the brains into wafer-thin sections, and scanned and digitized them. They corrected distortions from the chopping using data from the MRI scans and then lined up neurons in consecutive sections—picture putting together a 3D puzzle—to reconstruct the whole brain. Overall, the team had to analyze 24,000 brain sections, which prompted them to build a computational management system for individual brain sections—a win, because they could now track individual donor brains too.
Their method was quite clever. They first mapped their results to a brain template from a single person, called the MNI-Colin27 template. Because the reference brain was extremely detailed, this allowed the team to better figure out the location of brain cells and regions in a particular anatomical space.
However, MNI-Colin27’s brain isn’t your or my brain—or any of the brains the team analyzed. To dilute any of Colin’s potential brain quirks, the team also mapped their dataset onto an “average brain,” dubbed the ICBM2009c (catchy, I know).
This step allowed the team to “standardize” their results with everything else from the Human Connectome Project and the UK Biobank, kind of like adding their Google Maps layer to the existing map. To highlight individual brain differences, the team overlaid their dataset on existing ones, and looked for differences in the cytoarchitecture.
The microscopic architecture of neurons change between two areas (dotted line), forming the basis of different identifiable brain regions. To account for individual differences, the team also calculated a probability map (right hemisphere). Image credit: Forschungszentrum Juelich / Katrin Amunts
Based on structure alone, the brains were both remarkably different and shockingly similar at the same time. For example, the cortexes—the outermost layer of the brain—were physically different across donor brains of different age and sex. The region especially divergent between people was Broca’s region, which is traditionally linked to speech production. In contrast, parts of the visual cortex were almost identical between the brains.
The Brain-Mapping Future
Rather than relying on the brain’s visible “landmarks,” which can still differ between people, the probabilistic map is far more precise, the authors said.
What’s more, the map could also pool yet unmapped regions in the cortex—about 30 percent or so—into “gap maps,” providing neuroscientists with a better idea of what still needs to be understood.
“New maps are continuously replacing gap maps with progress in mapping while the process is captured and documented … Consequently, the atlas is not static but rather represents a ‘living map,’” the authors said.
Thanks to its structurally-sound architecture down to individual cells, the atlas can contribute to brain modeling and simulation down the line—especially for personalized brain models for neurological disorders such as seizures. Researchers can also use the framework for other species, and they can even incorporate new data-crunching processors into the workflow, such as mapping brain regions using artificial intelligence.
Fundamentally, the goal is to build shared resources to better understand the brain. “[These atlases] help us—and more and more researchers worldwide—to better understand the complex organization of the brain and to jointly uncover how things are connected,” the authors said.
Image credit: Richard Watts, PhD, University of Vermont and Fair Neuroimaging Lab, Oregon Health and Science University Continue reading
#437276 Cars Will Soon Be Able to Sense and ...
Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.
Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.
Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.
What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?
Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.
Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.
Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.
Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.
But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).
Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?
Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.
And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.
Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.
A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.
Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.
Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.
Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.
Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.
In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.
Image Credit: Free-Photos from Pixabay Continue reading