Tag Archives: different
#437550 McDonald’s Is Making a Plant-Based ...
Fast-food chains have been doing what they can in recent years to health-ify their menus. For better or worse, burgers, fries, fried chicken, roast beef sandwiches, and the like will never go out of style—this is America, after all—but consumers are increasingly gravitating towards healthier options.
One of those options is plant-based foods, and not just salads and veggie burgers, but “meat” made from plants. Burger King was one of the first big fast-food chains to jump on the plant-based meat bandwagon, introducing its Impossible Whopper in restaurants across the country last year after a successful pilot program. Dunkin’ (formerly Dunkin’ Donuts) uses plant-based patties in its Beyond Sausage breakfast sandwiches.
But there’s one big player in the fast food market that’s been oddly missing from the plant-based trend—until now. McDonald’s announced last week that it will debut a sandwich called the McPlant in key US markets next year. Unlike Dunkin’ and Burger King, who both worked with Impossible Foods to make their plant-based products, McDonald’s worked with Los Angeles-based Beyond Meat, which makes chicken, beef, and pork-like products from plants.
According to Bloomberg, though, McDonald’s decided to forego a partnership with Beyond Meat in favor of creating its own plant-based products. Imitation chicken nuggets and plant-based breakfast sandwiches are in its plans as well.
McDonald’s has bounced back impressively from its March low (when the coronavirus lockdowns first happened in the US). Last month the company’s stock reached a 52-week high of $231 per share (as compared to its low in March of $124 per share).
To keep those numbers high and make it as easy as possible for customers to get their hands on plant-based burgers and all the traditional menu items too, the fast food chain is investing in tech and integrating more digital offerings into its restaurants.
McDonald’s has acquired a couple artificial intelligence companies in the last year and a half; Dynamic Yield is an Israeli company that uses AI to personalize customers’ experiences, and McDonald’s is using Dynamic Yield’s tech on its smart menu boards, for example by customizing the items displayed on the drive-thru menu based on the weather and the time of day, and recommending additional items based on what a customer asks for first (i.e. “You know what would go great with that coffee? Some pancakes!”).
The fast food giant also bought Apprente, a startup that uses AI in voice-based ordering platforms. McDonald’s is using the tech to help automate its drive-throughs.
In addition to these investments, the company plans to launch a digital hub called MyMcDonald’s that will include a loyalty program, start doing deliveries of its food through its mobile app, and test different ways of streamlining the food order and pickup process—with many of the new ideas geared towards pandemic times, like express pickup lanes for people who placed digital orders and restaurants with drive-throughs for delivery and pickup orders only.
Plant-based meat patties appear to be just one small piece of McDonald’s modernization plans. Those of us who were wondering what they were waiting for should have known—one of the most-recognized fast food chains in the world wasn’t about to let itself get phased out. It seems it will only be a matter of time until you can pull out your phone, make a few selections, and have a burger made from plants—with a side of fries made from more plants—show up at your door a little while later. Drive-throughs, shouting your order into a fuzzy speaker with a confused teen on the other end, and burgers made from beef? So 2019.
Image Credit: McDonald’s Continue reading
#437504 A New and Improved Burger Robot’s on ...
No doubt about it, the pandemic has changed the way we eat. Never before have so many people who hated cooking been forced to learn how to prepare a basic meal for themselves. With sit-down restaurants limiting their capacity or shutting down altogether, consumption of fast food and fast-casual food has skyrocketed. Don’t feel like slaving over a hot stove? Just hit the drive through and grab a sandwich and some fries (the health implications of increased fast food consumption are another matter…).
Given our sudden immense need for paper-wrapped burgers and cardboard cartons of fries, fast food workers are now counted as essential. But what about their safety, both from a virus standpoint and from the usual risks of working in a busy kitchen (like getting burned by the stove or the hot oil from the fryer, cut by a slicer, etc.)? And how many orders of burgers and fries can humans possibly churn out in an hour?
Enter the robot. Three and a half years ago, a burger-flipping robot aptly named Flippy, made by Miso Robotics, made its debut at a fast food restaurant in California called CaliBurger. Now Flippy is on the market for anyone who wishes to purchase their own, with a price tag of $30,000 and a range of new capabilities—this burger bot has progressed far beyond just flipping burgers.
Flippy’s first iteration was already pretty impressive. It used machine learning software to locate and identify objects in front of it (rather than needing to have objects lined up in specific spots), and was able to learn from experience to improve its accuracy. Sensors on its grill-facing side took in thermal and 3D data to gauge the cooking process for multiple patties at a time, and cameras allowed the robot to ‘see’ its surroundings.
A system that digitally sent tickets to the kitchen from the restaurant’s front counter kept Flippy on top of how many burgers it should be cooking at any given time. Its key tasks were pulling raw patties from a stack and placing them on the grill, tracking each burger’s cook time and temperature, and transferring cooked burgers to a plate.
The new and improved Flippy can do all this and more. It can cook 19 different foods, including chicken wings, onion rings, french fries, and even the Impossible Burger (which, as you may know, isn’t actually made of meat, and that means it’s a little trickier to grill it to perfection).
Flippy’s handiwork. Image Credit: Miso Robotics
And instead of its body sitting on a cart on wheels (which took up a lot of space and meant the robot’s arm could get in the way of human employees), it’s now attached to a rail along the stove’s hood, and can move along the rail to access both the grill and the fryer (provided they’re next to each other, which in many fast food restaurants they are). In fact, Flippy has a new acronym attached to its name: ROAR, which stands for Robot on a Rail.
Flippy ROAR in action, artist rendering. Image Credit: Miso Robotics
Sensors equipped with laser make it safer for human employees to work near Flippy. The bot can automatically switch between different tools, such as a spatula for flipping patties and tongs for gripping the handle of a fryer basket. Its AI software will enable it to learn new skills over time.
Flippy’s interface. Image Credit: Miso Robotics
The first big restaurant chain to go all-in on Flippy was White Castle, which in July announced plans to pilot Flippy ROAR before year’s end. And just last month, Miso made the bot commercially available. The current cost is $30,000 (plus a monthly fee of $1,500 for use of the software), but the company hopes to bring the price down to $20,000 within the next year.
According to Business Insider, demand for the fast food robot is through the roof, probably given a significant boost by the pandemic—thanks, Covid-19. The pace of automation has picked up across multiple sectors, and will likely continue to accelerate as companies look to insure themselves against additional losses.
So for the immediate future, it seems that no matter what happens, we don’t have to worry about the supply of burgers, fries, onion rings, chicken wings, and the like running out.
Now if only Flippy had a cousin—perhaps named Leafy—who could chop vegetables and greens and put together fresh-made salads…
Maybe that can be Miso Robotics’ next project.
Image Credit: Miso Robotics Continue reading
#437491 3.2 Billion Images and 720,000 Hours of ...
Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.
Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”
The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.
A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours
In the video, Biden says “Hello, Minnesota.”
The event did indeed happen in MN — signs on stage read MN
But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v
— Donie O'Sullivan (@donie) November 1, 2020
If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?
While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.
Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.
For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.
Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.
Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.
Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr
— Dope Historic Pics (@dopehistoricpic) December 20, 2013
This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.
In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.
“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.
This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5
— Willie's Reserve (@WilliesReserve) January 21, 2019
Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.
Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.
You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a
— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020
Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.
Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh
— EVC Music (@EVCMusicUK) January 6, 2020
Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.
Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.
These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY
Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.
We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.
Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP
But what about edits that only alter pixel values such as color, saturation, or contrast?
One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”
Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).
Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.
Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:
Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.
Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.
Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”
Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.
Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.
If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.
The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:
Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?
Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Simon Steinberger from Pixabay Continue reading