Tag Archives: describe
#439081 Classify This Robot-Woven Sneaker With ...
For athletes trying to run fast, the right shoe can be essential to achieving peak performance. For athletes trying to run fast as humanly possible, a runner’s shoe can also become a work of individually customized engineering.
This is why Adidas has married 3D printing with robotic automation in a mass-market footwear project it’s called Futurecraft.Strung, expected to be available for purchase as soon as later this year. Using a customized, 3D-printed sole, a Futurecraft.Strung manufacturing robot can place some 2,000 threads from up to 10 different sneaker yarns in one upper section of the shoe.
Skylar Tibbits, founder and co-director of the Self-Assembly Lab and associate professor in MIT's Department of Architecture, says that because of its small scale, footwear has been an area of focus for 3D printing and additive manufacturing, which involves adding material bit by bit.
“There are really interesting complex geometry problems,” he says. “It’s pretty well suited.”
Photo: Adidas
Beginning with a 3D-printed sole, Adidas robots weave together some 2000 threads from up to 10 different sneaker yarns to make one Futurecraft.Strung shoe—expected on the marketplace later this year or sometime in 2022.
Adidas began working on the Futurecraft.Strung project in 2016. Then two years later, Adidas Futurecraft, the company’s innovation incubator, began collaborating with digital design studio Kram/Weisshaar. In less than a year the team built the software and hardware for the upper part of the shoe, called Strung uppers.
“Most 3D printing in the footwear space has been focused on the midsole or outsole, like the bottom of the shoe,” Tibbits explains. But now, he says, Adidas is bringing robotics and a threaded design to the upper part of the shoe. The company bases its Futurecraft.Strung design on high-resolution scans of how runners’ feet move as they travel.
This more flexible design can benefit athletes in multiple sports, according to an Adidas blog post. It will be able to use motion capture of an athlete’s foot and feedback from the athlete to make the design specific to the athlete’s specific gait. Adidas customizes the weaving of the shoe’s “fabric” (really more like an elaborate woven string figure, a cat’s cradle to fit the foot) to achieve a close and comfortable fit, the company says.
What they call their “4D sole” consists of a design combining 3D printing with materials that can change their shape and properties over time. In fact, Tibbits coined the term 4D printing to describe this process in 2013. The company takes customized data from the Adidas Athlete Intelligent Engine to make the shoe, according to Kram/Weisshaar’s website.
Photo: Adidas
Closeup of the weaving process behind a Futurecraft.Strung shoe
“With Strung for the first time, we can program single threads in any direction, where each thread has a different property or strength,” Fionn Corcoran-Tadd, an innovation designer at Adidas’ Futurecraft lab, said in a company video. Each thread serves a purpose, the video noted. “This is like customized string art for your feet,” Tibbits says.
Although the robotics technology the company uses has been around for many years, what Adidas’s robotic weavers can achieve with thread is a matter of elaborate geometry. “It’s more just like a really elegant way to build up material combining robotics and the fibers and yarns into these intricate and complex patterns,” he says.
Robots can of course create patterns with more precision than if someone wound it by hand, as well as rapidly and reliably changing the yarn and color of the fabric pattern. Adidas says it can make a single upper in 45 minutes and a pair of sneakers in 1 hour and 30 minutes. It plans to reduce this time down to minutes in the months ahead, the company said.
An Adidas spokesperson says sneakers incorporating the Futurecraft.Strung uppers design are a prototype, but the company plans to bring a Strung shoe to market in late 2021 or 2022. However, Adidas Futurecraft sneakers are currently available with a 3D-printed midsole.
Adidas plans to continue gathering data from athletes to customize the uppers of sneakers. “We’re building up a library of knowledge and it will get more interesting as we aggregate data of testing and from different athletes and sports,” the Adidas Futurecraft team writes in a blog post. “The more we understand about how data can become design code, the more we can take that and apply it to new Strung textiles. It’s a continuous evolution.” Continue reading
#439062 Xenobots 2.0: These Living Robots ...
The line between animals and machines was already getting blurry after a team of scientists and roboticists unveiled the first living robots last year. Now the same team has released version 2.0 of their so-called xenobots, and they’re faster, stronger, and more capable than ever.
In January 2020, researchers from Tufts University and the University of Vermont laid out a method for building tiny biological machines out of the eggs of the African claw frog Xenopus laevis. Dubbed xenobots after their animal forebear, they could move independently, push objects, and even team up to create swarms.
Remarkably, building them involved no genetic engineering. Instead, the team used an evolutionary algorithm running on a supercomputer to test out thousands of potential designs made up of different configurations of cells.
Once they’d found some promising candidates that could solve the tasks they were interested in, they used microsurgical tools to build real-world versions out of living cells. The most promising design was built by splicing heart muscle cells (which could contract to propel the xenobots), and skin cells (which provided a rigid support).
Impressive as that might sound, having to build each individual xenobot by hand is obviously tedious. But now the team has devised a new approach that works from the bottom up by getting the xenobots to self-assemble their bodies from single cells. Not only is the approach more scalable, the new xenobots are faster, live longer, and even have a rudimentary memory.
In a paper in Science Robotics, the researchers describe how they took stem cells from frog embryos and allowed them to grow into clumps of several thousand cells called spheroids. After a few days, the stem cells had turned into skin cells covered in small hair-like projections called cilia, which wriggle back and forth.
Normally, these structures are used to spread mucus around on the frog’s skin. But when divorced from their normal context they took on a function more similar to that seen in microorganisms, which use cilia to move about by acting like tiny paddles.
“We are witnessing the remarkable plasticity of cellular collectives, which build a rudimentary new ‘body’ that is quite distinct from their default—in this case, a frog—despite having a completely normal genome,” corresponding author Michael Levin from Tufts University said in a press release.
“We see that cells can re-purpose their genetically encoded hardware, like cilia, for new functions such as locomotion. It is amazing that cells can spontaneously take on new roles and create new body plans and behaviors without long periods of evolutionary selection for those features,” he said.
Not only were the new xenobots faster and longer-lived, they were also much better at tasks like working together as a swarm to gather piles of iron oxide particles. And while the form and function of the xenobots was achieved without any genetic engineering, in an extra experiment the team injected them with RNA that caused them to produce a fluorescent protein that changes color when exposed to a particular color of light.
This allowed the xenobots to record whether they had come into contact with a specific light source while traveling about. The researchers say this is a proof of principle that the xenobots can be imbued with a molecular memory, and future work could allow them to record multiple stimuli and potentially even react to them.
What exactly these xenobots could eventually be used for is still speculative, but they have features that make them a promising alternative to non-organic alternatives. For a start, robots made of stem cells are completely biodegradable and also have their own power source in the form of “yolk platelets” found in all amphibian embryos. They are also able to self-heal in as little as five minutes if cut, and can take advantage of cells’ ability to process all kinds of chemicals.
That suggests they could have applications in everything from therapeutics to environmental engineering. But the researchers also hope to use them to better understand the processes that allow individual cells to combine and work together to create a larger organism, and how these processes might be harnessed and guided for regenerative medicine.
As these animal-machine hybrids advance, they are sure to raise ethical concerns and question marks over the potential risks. But it looks like the future of robotics could be a lot more wet and squishy than we imagined.
Image Credit: Doug Blackiston/Tufts University Continue reading
#439040 Ready for duty: Healthcare robots get ...
Not long after the 1918 Spanish flu pandemic, Czech writer Karel Čapek first introduced the term “robot” to describe artificial people in his 1921 sci-fi play R.U.R. While we have not yet created the highly intelligent humanoid robots imagined by Čapek, the robots most commonly used today are complex systems that work alongside humans, assisting with an ever-expanding set of tasks. Continue reading
#439032 To Learn To Deal With Uncertainty, This ...
AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.
But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.
“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”
His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.
“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.
In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.
Gif: MIT Aerospace Controls Laboratory
In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).
Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.
But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.
This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.
“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading