Tag Archives: deep
#437978 How Mirroring the Architecture of the ...
While AI can carry out some impressive feats when trained on millions of data points, the human brain can often learn from a tiny number of examples. New research shows that borrowing architectural principles from the brain can help AI get closer to our visual prowess.
The prevailing wisdom in deep learning research is that the more data you throw at an algorithm, the better it will learn. And in the era of Big Data, that’s easier than ever, particularly for the large data-centric tech companies carrying out a lot of the cutting-edge AI research.
Today’s largest deep learning models, like OpenAI’s GPT-3 and Google’s BERT, are trained on billions of data points, and even more modest models require large amounts of data. Collecting these datasets and investing the computational resources to crunch through them is a major bottleneck, particularly for less well-resourced academic labs.
It also means today’s AI is far less flexible than natural intelligence. While a human only needs to see a handful of examples of an animal, a tool, or some other category of object to be able pick it out again, most AI need to be trained on many examples of an object in order to be able to recognize it.
There is an active sub-discipline of AI research aimed at what is known as “one-shot” or “few-shot” learning, where algorithms are designed to be able to learn from very few examples. But these approaches are still largely experimental, and they can’t come close to matching the fastest learner we know—the human brain.
This prompted a pair of neuroscientists to see if they could design an AI that could learn from few data points by borrowing principles from how we think the brain solves this problem. In a paper in Frontiers in Computational Neuroscience, they explained that the approach significantly boosts AI’s ability to learn new visual concepts from few examples.
“Our model provides a biologically plausible way for artificial neural networks to learn new visual concepts from a small number of examples,” Maximilian Riesenhuber, from Georgetown University Medical Center, said in a press release. “We can get computers to learn much better from few examples by leveraging prior learning in a way that we think mirrors what the brain is doing.”
Several decades of neuroscience research suggest that the brain’s ability to learn so quickly depends on its ability to use prior knowledge to understand new concepts based on little data. When it comes to visual understanding, this can rely on similarities of shape, structure, or color, but the brain can also leverage abstract visual concepts thought to be encoded in a brain region called the anterior temporal lobe (ATL).
“It is like saying that a platypus looks a bit like a duck, a beaver, and a sea otter,” said paper co-author Joshua Rule, from the University of California Berkeley.
The researchers decided to try and recreate this capability by using similar high-level concepts learned by an AI to help it quickly learn previously unseen categories of images.
Deep learning algorithms work by getting layers of artificial neurons to learn increasingly complex features of an image or other data type, which are then used to categorize new data. For instance, early layers will look for simple features like edges, while later ones might look for more complex ones like noses, faces, or even more high-level characteristics.
First they trained the AI on 2.5 million images across 2,000 different categories from the popular ImageNet dataset. They then extracted features from various layers of the network, including the very last layer before the output layer. They refer to these as “conceptual features” because they are the highest-level features learned, and most similar to the abstract concepts that might be encoded in the ATL.
They then used these different sets of features to train the AI to learn new concepts based on 2, 4, 8, 16, 32, 64, and 128 examples. They found that the AI that used the conceptual features yielded much better performance than ones trained using lower-level features on lower numbers of examples, but the gap shrunk as they were fed more training examples.
While the researchers admit the challenge they set their AI was relatively simple and only covers one aspect of the complex process of visual reasoning, they said that using a biologically plausible approach to solving the few-shot problem opens up promising new avenues in both neuroscience and AI.
“Our findings not only suggest techniques that could help computers learn more quickly and efficiently, they can also lead to improved neuroscience experiments aimed at understanding how people learn so quickly, which is not yet well understood,” Riesenhuber said.
As the researchers note, the human visual system is still the gold standard when it comes to understanding the world around us. Borrowing from its design principles might turn out to be a profitable direction for future research.
Image Credit: Gerd Altmann from Pixabay Continue reading
#437905 New Deep Learning Method Helps Robots ...
One of the biggest things standing in the way of the robot revolution is their inability to adapt. That may be about to change though, thanks to a new approach that blends pre-learned skills on the fly to tackle new challenges.
Put a robot in a tightly-controlled environment and it can quickly surpass human performance at complex tasks, from building cars to playing table tennis. But throw these machines a curve ball and they’re in trouble—just check out this compilation of some of the world’s most advanced robots coming unstuck in the face of notoriously challenging obstacles like sand, steps, and doorways.
The reason robots tend to be so fragile is that the algorithms that control them are often manually designed. If they encounter a situation the designer didn’t think of, which is almost inevitable in the chaotic real world, then they simply don’t have the tools to react.
Rapid advances in AI have provided a potential workaround by letting robots learn how to carry out tasks instead of relying on hand-coded instructions. A particularly promising approach is deep reinforcement learning, where the robot interacts with its environment through a process of trial-and-error and is rewarded for carrying out the correct actions. Over many repetitions it can use this feedback to learn how to accomplish the task at hand.
But the approach requires huge amounts of data to solve even simple tasks. And most of the things we would want a robot to do are actually comprised of many smaller tasks—for instance, delivering a parcel involves learning how to pick an object up, how to walk, how to navigate, and how to pass an object to someone else, among other things.
Training all these sub-tasks simultaneously is hugely complex and far beyond the capabilities of most current AI systems, so many experiments so far have focused on narrow skills. Some have tried to train AI on multiple skills separately and then use an overarching system to flip between these expert sub-systems, but these approaches still can’t adapt to completely new challenges.
Building off this research, though, scientists have now created a new AI system that can blend together expert sub-systems specialized for a specific task. In a paper in Science Robotics, they explain how this allows a four-legged robot to improvise new skills and adapt to unfamiliar challenges in real time.
The technique, dubbed multi-expert learning architecture (MELA), relies on a two-stage training approach. First the researchers used a computer simulation to train two neural networks to carry out two separate tasks: trotting and recovering from a fall.
They then used the models these two networks learned as seeds for eight other neural networks specialized for more specific motor skills, like rolling over or turning left or right. The eight “expert networks” were trained simultaneously along with a “gating network,” which learns how to combine these experts to solve challenges.
Because the gating network synthesizes the expert networks rather than switching them on sequentially, MELA is able to come up with blends of different experts that allow it to tackle problems none could solve alone.
The authors liken the approach to training people in how to play soccer. You start out by getting them to do drills on individual skills like dribbling, passing, or shooting. Once they’ve mastered those, they can then intelligently combine them to deal with more dynamic situations in a real game.
After training the algorithm in simulation, the researchers uploaded it to a four-legged robot and subjected it to a battery of tests, both indoors and outdoors. The robot was able to adapt quickly to tricky surfaces like gravel or pebbles, and could quickly recover from being repeatedly pushed over before continuing on its way.
There’s still some way to go before the approach could be adapted for real-world commercially useful robots. For a start, MELA currently isn’t able to integrate visual perception or a sense of touch; it simply relies on feedback from the robot’s joints to tell it what’s going on around it. The more tasks you ask the robot to master, the more complex and time-consuming the training will get.
Nonetheless, the new approach points towards a promising way to make multi-skilled robots become more than the sum of their parts. As much fun as it is, it seems like laughing at compilations of clumsy robots may soon be a thing of the past.
Image Credit: Yang et al., Science Robotics Continue reading