Tag Archives: Deep learning

#435199 The Rise of AI Art—and What It Means ...

Artificially intelligent systems are slowly taking over tasks previously done by humans, and many processes involving repetitive, simple movements have already been fully automated. In the meantime, humans continue to be superior when it comes to abstract and creative tasks.

However, it seems like even when it comes to creativity, we’re now being challenged by our own creations.

In the last few years, we’ve seen the emergence of hundreds of “AI artists.” These complex algorithms are creating unique (and sometimes eerie) works of art. They’re generating stunning visuals, profound poetry, transcendent music, and even realistic movie scripts. The works of these AI artists are raising questions about the nature of art and the role of human creativity in future societies.

Here are a few works of art created by non-human entities.

Unsecured Futures
by Ai.Da

Ai-Da Robot with Painting. Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations.
Earlier this month we saw the announcement of Ai.Da, considered the first ultra-realistic drawing robot artist. Her mechanical abilities, combined with AI-based algorithms, allow her to draw, paint, and even sculpt. She is able to draw people using her artificial eye and a pencil in her hand. Ai.Da’s artwork and first solo exhibition, Unsecured Futures, will be showcased at Oxford University in July.

Ai-Da Cartesian Painting. Image Credit: Ai-Da Artworks. Published with permission from Midas Public Relations.
Obviously Ai.Da has no true consciousness, thoughts, or feelings. Despite that, the (human) organizers of the exhibition believe that Ai.Da serves as a basis for crucial conversations about the ethics of emerging technologies. The exhibition will serve as a stimulant for engaging with critical questions about what kind of future we ought to create via such technologies.

The exhibition’s creators wrote, “Humans are confident in their position as the most powerful species on the planet, but how far do we actually want to take this power? To a Brave New World (Nightmare)? And if we use new technologies to enhance the power of the few, we had better start safeguarding the future of the many.”

Google’s PoemPortraits
Our transcendence adorns,
That society of the stars seem to be the secret.

The two lines of poetry above aren’t like any poetry you’ve come across before. They are generated by an algorithm that was trained via deep learning neural networks trained on 20 million words of 19th-century poetry.

Google’s latest art project, named PoemPortraits, takes a word of your suggestion and generates a unique poem (once again, a collaboration of man and machine). You can even add a selfie in the final “PoemPortrait.” Artist Es Devlin, the project’s creator, explains that the AI “doesn’t copy or rework existing phrases, but uses its training material to build a complex statistical model. As a result, the algorithm generates original phrases emulating the style of what it’s been trained on.”

The generated poetry can sometimes be profound, and sometimes completely meaningless.But what makes the PoemPortraits project even more interesting is that it’s a collaborative project. All of the generated lines of poetry are combined to form a consistently growing collective poem, which you can view after your lines are generated. In many ways, the final collective poem is a collaboration of people from around the world working with algorithms.

Faceless Portraits Transcending Time
AICAN + Ahmed Elgammal

Image Credit: AICAN + Ahmed Elgammal | Faceless Portrait #2 (2019) | Artsy.
In March of this year, an AI artist called AICAN and its creator Ahmed Elgammal took over a New York gallery. The exhibition at HG Commentary showed two series of canvas works portraying harrowing, dream-like faceless portraits.

The exhibition was not simply credited to a machine, but rather attributed to the collaboration between a human and machine. Ahmed Elgammal is the founder and director of the Art and Artificial Intelligence Laboratory at Rutgers University. He considers AICAN to not only be an autonomous AI artist, but also a collaborator for artistic endeavors.

How did AICAN create these eerie faceless portraits? The system was presented with 100,000 photos of Western art from over five centuries, allowing it to learn the aesthetics of art via machine learning. It then drew from this historical knowledge and the mandate to create something new to create an artwork without human intervention.

Genesis
by AIVA Technologies

Listen to the score above. While you do, reflect on the fact that it was generated by an AI.

AIVA is an AI that composes soundtrack music for movies, commercials, games, and trailers. Its creative works span a wide range of emotions and moods. The scores it generates are indistinguishable from those created by the most talented human composers.

The AIVA music engine allows users to generate original scores in multiple ways. One is to upload an existing human-generated score and select the temp track to base the composition process on. Another method involves using preset algorithms to compose music in pre-defined styles, including everything from classical to Middle Eastern.

Currently, the platform is promoted as an opportunity for filmmakers and producers. But in the future, perhaps every individual will have personalized music generated for them based on their interests, tastes, and evolving moods. We already have algorithms on streaming websites recommending novel music to us based on our interests and history. Soon, algorithms may be used to generate music and other works of art that are tailored to impact our unique psyches.

The Future of Art: Pushing Our Creative Limitations
These works of art are just a glimpse into the breadth of the creative works being generated by algorithms and machines. Many of us will rightly fear these developments. We have to ask ourselves what our role will be in an era where machines are able to perform what we consider complex, abstract, creative tasks. The implications on the future of work, education, and human societies are profound.

At the same time, some of these works demonstrate that AI artists may not necessarily represent a threat to human artists, but rather an opportunity for us to push our creative boundaries. The most exciting artistic creations involve collaborations between humans and machines.

We have always used our technological scaffolding to push ourselves beyond our biological limitations. We use the telescope to extend our line of sight, planes to fly, and smartphones to connect with others. Our machines are not always working against us, but rather working as an extension of our minds. Similarly, we could use our machines to expand on our creativity and push the boundaries of art.

Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations. Continue reading

Posted in Human Robots

#435127 Teaching AI the Concept of ‘Similar, ...

As a human you instinctively know that a leopard is closer to a cat than a motorbike, but the way we train most AI makes them oblivious to these kinds of relations. Building the concept of similarity into our algorithms could make them far more capable, writes the author of a new paper in Science Robotics.

Convolutional neural networks have revolutionized the field of computer vision to the point that machines are now outperforming humans on some of the most challenging visual tasks. But the way we train them to analyze images is very different from the way humans learn, says Atsuto Maki, an associate professor at KTH Royal Institute of Technology.

“Imagine that you are two years old and being quizzed on what you see in a photo of a leopard,” he writes. “You might answer ‘a cat’ and your parents might say, ‘yeah, not quite but similar’.”

In contrast, the way we train neural networks rarely gives that kind of partial credit. They are typically trained to have very high confidence in the correct label and consider all incorrect labels, whether ”cat” or “motorbike,” equally wrong. That’s a mistake, says Maki, because ignoring the fact that something can be “less wrong” means you’re not exploiting all of the information in the training data.

Even when models are trained this way, there will be small differences in the probabilities assigned to incorrect labels that can tell you a lot about how well the model can generalize what it has learned to unseen data.

If you show a model a picture of a leopard and it gives “cat” a probability of five percent and “motorbike” one percent, that suggests it picked up on the fact that a cat is closer to a leopard than a motorbike. In contrast, if the figures are the other way around it means the model hasn’t learned the broad features that make cats and leopards similar, something that could potentially be helpful when analyzing new data.

If we could boost this ability to identify similarities between classes we should be able to create more flexible models better able to generalize, says Maki. And recent research has demonstrated how variations of an approach called regularization might help us achieve that goal.

Neural networks are prone to a problem called “overfitting,” which refers to a tendency to pay too much attention to tiny details and noise specific to their training set. When that happens, models will perform excellently on their training data but poorly when applied to unseen test data without these particular quirks.

Regularization is used to circumvent this problem, typically by reducing the network’s capacity to learn all this unnecessary information and therefore boost its ability to generalize to new data. Techniques are varied, but generally involve modifying the network’s structure or the strength of the weights between artificial neurons.

More recently, though, researchers have suggested new regularization approaches that work by encouraging a broader spread of probabilities across all classes. This essentially helps them capture more of the class similarities, says Maki, and therefore boosts their ability to generalize.

One such approach was devised in 2017 by Google Brain researchers, led by deep learning pioneer Geoffrey Hinton. They introduced a penalty to their training process that directly punished overconfident predictions in the model’s outputs, and a technique called label smoothing that prevents the largest probability becoming much larger than all others. This meant the probabilities were lower for correct labels and higher for incorrect ones, which was found to boost performance of models on varied tasks from image classification to speech recognition.

Another came from Maki himself in 2017 and achieves the same goal, but by suppressing high values in the model’s feature vector—the mathematical construct that describes all of an object’s important characteristics. This has a knock-on effect on the spread of output probabilities and also helped boost performance on various image classification tasks.

While it’s still early days for the approach, the fact that humans are able to exploit these kinds of similarities to learn more efficiently suggests that models that incorporate them hold promise. Maki points out that it could be particularly useful in applications such as robotic grasping, where distinguishing various similar objects is important.

Image Credit: Marianna Kalashnyk / Shutterstock.com Continue reading

Posted in Human Robots

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#434837 In Defense of Black Box AI

Deep learning is powering some amazing new capabilities, but we find it hard to scrutinize the workings of these algorithms. Lack of interpretability in AI is a common concern and many are trying to fix it, but is it really always necessary to know what’s going on inside these “black boxes”?

In a recent perspective piece for Science, Elizabeth Holm, a professor of materials science and engineering at Carnegie Mellon University, argued in defense of the black box algorithm. I caught up with her last week to find out more.

Edd Gent: What’s your experience with black box algorithms?

Elizabeth Holm: I got a dual PhD in materials science and engineering and scientific computing. I came to academia about six years ago and part of what I wanted to do in making this career change was to refresh and revitalize my computer science side.

I realized that computer science had changed completely. It used to be about algorithms and making codes run fast, but now it’s about data and artificial intelligence. There are the interpretable methods like random forest algorithms, where we can tell how the machine is making its decisions. And then there are the black box methods, like convolutional neural networks.

Once in a while we can find some information about their inner workings, but most of the time we have to accept their answers and kind of probe around the edges to figure out the space in which we can use them and how reliable and accurate they are.

EG: What made you feel like you had to mount a defense of these black box algorithms?

EH: When I started talking with my colleagues, I found that the black box nature of many of these algorithms was a real problem for them. I could understand that because we’re scientists, we always want to know why and how.

It got me thinking as a bit of a contrarian, “Are black boxes all bad? Must we reject them?” Surely not, because human thought processes are fairly black box. We often rely on human thought processes that the thinker can’t necessarily explain.

It’s looking like we’re going to be stuck with these methods for a while, because they’re really helpful. They do amazing things. And so there’s a very pragmatic realization that these are the best methods we’ve got to do some really important problems, and we’re not right now seeing alternatives that are interpretable. We’re going to have to use them, so we better figure out how.

EG: In what situations do you think we should be using black box algorithms?

EH: I came up with three rules. The simplest rule is: when the cost of a bad decision is small and the value of a good decision is high, it’s worth it. The example I gave in the paper is targeted advertising. If you send an ad no one wants it doesn’t cost a lot. If you’re the receiver it doesn’t cost a lot to get rid of it.

There are cases where the cost is high, and that’s then we choose the black box if it’s the best option to do the job. Things get a little trickier here because we have to ask “what are the costs of bad decisions, and do we really have them fully characterized?” We also have to be very careful knowing that our systems may have biases, they may have limitations in where you can apply them, they may be breakable.

But at the same time, there are certainly domains where we’re going to test these systems so extensively that we know their performance in virtually every situation. And if their performance is better than the other methods, we need to do it. Self driving vehicles are a significant example—it’s almost certain they’re going to have to use black box methods, and that they’re going to end up being better drivers than humans.

The third rule is the more fun one for me as a scientist, and that’s the case where the black box really enlightens us as to a new way to look at something. We have trained a black box to recognize the fracture energy of breaking a piece of metal from a picture of the broken surface. It did a really good job, and humans can’t do this and we don’t know why.

What the computer seems to be seeing is noise. There’s a signal in that noise, and finding it is very difficult, but if we do we may find something significant to the fracture process, and that would be an awesome scientific discovery.

EG: Do you think there’s been too much emphasis on interpretability?

EH: I think the interpretability problem is a fundamental, fascinating computer science grand challenge and there are significant issues where we need to have an interpretable model. But how I would frame it is not that there’s too much emphasis on interpretability, but rather that there’s too much dismissiveness of uninterpretable models.

I think that some of the current social and political issues surrounding some very bad black box outcomes have convinced people that all machine learning and AI should be interpretable because that will somehow solve those problems.

Asking humans to explain their rationale has not eliminated bias, or stereotyping, or bad decision-making in humans. Relying too much on interpreted ability perhaps puts the responsibility in the wrong place for getting better results. I can make a better black box without knowing exactly in what way the first one was bad.

EG: Looking further into the future, do you think there will be situations where humans will have to rely on black box algorithms to solve problems we can’t get our heads around?

EH: I do think so, and it’s not as much of a stretch as we think it is. For example, humans don’t design the circuit map of computer chips anymore. We haven’t for years. It’s not a black box algorithm that designs those circuit boards, but we’ve long since given up trying to understand a particular computer chip’s design.

With the billions of circuits in every computer chip, the human mind can’t encompass it, either in scope or just the pure time that it would take to trace every circuit. There are going to be cases where we want a system so complex that only the patience that computers have and their ability to work in very high-dimensional spaces is going to be able to do it.

So we can continue to argue about interpretability, but we need to acknowledge that we’re going to need to use black boxes. And this is our opportunity to do our due diligence to understand how to use them responsibly, ethically, and with benefits rather than harm. And that’s going to be a social conversation as well as as a scientific one.

*Responses have been edited for length and style

Image Credit: Chingraph / Shutterstock.com Continue reading

Posted in Human Robots

#434818 Watch These Robots Do Tasks You Thought ...

Robots have been masters of manufacturing at speed and precision for decades, but give them a seemingly simple task like stacking shelves, and they quickly get stuck. That’s changing, though, as engineers build systems that can take on the deceptively tricky tasks most humans can do with their eyes closed.

Boston Dynamics is famous for dramatic reveals of robots performing mind-blowing feats that also leave you scratching your head as to what the market is—think the bipedal Atlas doing backflips or Spot the galloping robot dog.

Last week, the company released a video of a robot called Handle that looks like an ostrich on wheels carrying out the seemingly mundane task of stacking boxes in a warehouse.

It might seem like a step backward, but this is exactly the kind of practical task robots have long struggled with. While the speed and precision of industrial robots has seen them take over many functions in modern factories, they’re generally limited to highly prescribed tasks carried out in meticulously-controlled environments.

That’s because despite their mechanical sophistication, most are still surprisingly dumb. They can carry out precision welding on a car or rapidly assemble electronics, but only by rigidly following a prescribed set of motions. Moving cardboard boxes around a warehouse might seem simple to a human, but it actually involves a variety of tasks machines still find pretty difficult—perceiving your surroundings, navigating, and interacting with objects in a dynamic environment.

But the release of this video suggests Boston Dynamics thinks these kinds of applications are close to prime time. Last week the company doubled down by announcing the acquisition of start-up Kinema Systems, which builds computer vision systems for robots working in warehouses.

It’s not the only company making strides in this area. On the same day the video went live, Google unveiled a robot arm called TossingBot that can pick random objects from a box and quickly toss them into another container beyond its reach, which could prove very useful for sorting items in a warehouse. The machine can train on new objects in just an hour or two, and can pick and toss up to 500 items an hour with better accuracy than any of the humans who tried the task.

And an apple-picking robot built by Abundant Robotics is currently on New Zealand farms navigating between rows of apple trees using LIDAR and computer vision to single out ripe apples before using a vacuum tube to suck them off the tree.

In most cases, advances in machine learning and computer vision brought about by the recent AI boom are the keys to these rapidly improving capabilities. Robots have historically had to be painstakingly programmed by humans to solve each new task, but deep learning is making it possible for them to quickly train themselves on a variety of perception, navigation, and dexterity tasks.

It’s not been simple, though, and the application of deep learning in robotics has lagged behind other areas. A major limitation is that the process typically requires huge amounts of training data. That’s fine when you’re dealing with image classification, but when that data needs to be generated by real-world robots it can make the approach impractical. Simulations offer the possibility to run this training faster than real time, but it’s proved difficult to translate policies learned in virtual environments into the real world.

Recent years have seen significant progress on these fronts, though, and the increasing integration of modern machine learning with robotics. In October, OpenAI imbued a robotic hand with human-level dexterity by training an algorithm in a simulation using reinforcement learning before transferring it to the real-world device. The key to ensuring the translation went smoothly was injecting random noise into the simulation to mimic some of the unpredictability of the real world.

And just a couple of weeks ago, MIT researchers demonstrated a new technique that let a robot arm learn to manipulate new objects with far less training data than is usually required. By getting the algorithm to focus on a few key points on the object necessary for picking it up, the system could learn to pick up a previously unseen object after seeing only a few dozen examples (rather than the hundreds or thousands typically required).

How quickly these innovations will trickle down to practical applications remains to be seen, but a number of startups as well as logistics behemoth Amazon are developing robots designed to flexibly pick and place the wide variety of items found in your average warehouse.

Whether the economics of using robots to replace humans at these kinds of menial tasks makes sense yet is still unclear. The collapse of collaborative robotics pioneer Rethink Robotics last year suggests there are still plenty of challenges.

But at the same time, the number of robotic warehouses is expected to leap from 4,000 today to 50,000 by 2025. It may not be long until robots are muscling in on tasks we’ve long assumed only humans could do.

Image Credit: Visual Generation / Shutterstock.com Continue reading

Posted in Human Robots