Tag Archives: DARPA

#439768 DARPA SubT Finals: Robot Operator Wisdom

Each of the DARPA Subterranean Challenge teams is allowed to bring up to 20 people to the Louisville Mega Cavern for the final event. Of those 20 people, only five can accompany the robots to the course staging area to set up the robots. And of those five, just one person can be what DARPA calls the Human Supervisor.

The Human Supervisor role, which most teams refer to as Robot Operator, is the only person allowed to interface with the robots while they're on the course. Or, it's probably more accurate to say that the team's base station computer is the only thing allowed to interface with robots on the course, and the human operator is the only person allowed to use the base station. The operator can talk to their teammates at the staging area, but that's about it—the rest of the team can't even look at the base station screens.
Robot operator is a unique job that can be different for each team, depending on what kinds of robots that team has deployed, how autonomous those robots are, and what strategy the team is using during the competition. On the second day of the SubT preliminary competition, we talked with robot operators from all eight Systems Track teams to learn more about their robots, exactly what they do during the competition runs, and their approach to autonomy.
“DARPA is interested in approaches that are highly autonomous without the need for substantive human interventions; capable of remotely mapping and/or navigating complex and dynamic terrain; and able to operate with degraded and unreliable communication links. The team is permitted to have a single Human Supervisor at a Base Station… The Human Supervisor is permitted to view, access, and/or analyze both course data and status data. Only the Human Supervisor is permitted to use wireless communications with the systems during the competition run.” DARPA's idea here is that most of the robots competing in SubT will be mostly autonomous most of the time, hence their use of “supervisor” rather than “operator.” Requiring substantial human-in-the-loop-ness is problematic for a couple of reasons—first, direct supervision requires constant communication, and we've seen how problematic communication can be on the SubT course. And second, operation means the need for a skilled and experienced operator, which is fine if you're a SubT team that's been practicing for years but could be impractical for a system of robots that's being deployed operationally.
So how are teams making the robot operator role work, and how close are they to being robot supervisors instead? I went around the team garages on the second day of preliminary runs, and asked each team operator the same three questions about their roles. I also asked the operators, “What is one question I should I ask the next operator I talk to?” I added this as a bonus question, with each operator answering a question suggested by a different team operator.
Team RobotikaRobot Operator: Martin DlouhyTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
This is the third time we've participated in a SubT event; we've tried various robots, small ones, bigger ones, but for us, these two robots seem to be optimal. Because we are flying from Czech Republic, the robots have to fit in our checked luggage. We also don't have the smaller robots or the drones that we had because like three weeks ago, we didn't even know if we would be allowed to enter the United States. So this is optimal for what we can bring to the competition, and we would like to demonstrate that we can do something with a simple solution.
Once your team of robots is on the course, what do you do during the run?
We have two robots, so it's easier than for some other teams. When the robots are in network range, I have some small tools to locally analyze data to help find artifacts that are hard for the robots to see, like the cellphone or the gas source. If everything goes fine, I basically don't have to be there. We've been more successful in the Virtual SubT competition because over half our team are software developers. We've really pushed hard to make the Virtual and System software as close as possible, and in Virtual, it's fully autonomous from beginning to end. There's one step that I do manually as operator—the robots have neural networks to recognize artifacts, but it's on me to click confirm to submit the artifact reports to DARPA.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
I would actually like an operator-less solution, and we could run it, but it's still useful to have a human operator—it's safer for the robot, because it's obvious to a human when the robot is not doing well.
Bonus operator question: What are the lowest and highest level decisions you have to make?
The lowest level is, I open the code and change it on the fly. I did it yesterday to change some of the safety parameters. I do this all the time, it's normal. The highest level is asking the team, “guys, how are we going to run our robots today.”
Team MARBLERobot Operator: Dan RileyTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We've been using the Huskies [wheeled robots] since the beginning of the competition, it's a reliable platform with a lot of terrain capability. It's a workhorse that can do a lot of stuff. We were also using a tank-like robot at one time, but we had traversability issues so we decided to drop that one for this competition. We also had UAVs, because there's a lot of value in not having to worry about the ground while getting to areas that you can't get to with a ground robot, but unfortunately we had to drop that too because of the number of people and time that we had. We decided to focus on what we knew we could do well, and make sure that our baseline system was super solid. And we added the Spot robots within the last two months mostly to access areas that the Huskies can't, like going up and down stairs and tricky terrain. It's fast, and we really like it.
Our team of robots is closely related to our deployment strategy. The way our planner and multi-robot coordination works is that the first robot really just plows through the course looking for big frontiers and new areas, and then subsequent robots will fill in the space behind looking for more detail. So we deploy the Spots first to push the environment since they're faster than the Huskies, and the Huskies will follow along and fill in the communications network.
We know we don't want to run five robots tomorrow. Before we got here, we saw the huge cavern and thought that running more robots would be better. But based on the first couple runs, we now know that the space inside is much smaller, so we think four robots is good.
Once your team of robots is on the course, what do you do during the run?
The main thing I'm watching for is artifact reports from robots. While I'm waiting for artifact reports, I'm monitoring where the robots are going, and mainly I want to see them going to new areas. If I see them backtracking or going where another robot has explored already, I have the ability to send them new goal points in another area. When I get an artifact report, I look at the image to verify that it's a good report. For objects that may not be visible, like the cell phone [which has to be detected through the wireless signal it emits], if it's early in the mission I'll generally wait and see if I get any other reports from another robot on it. The localization isn't great on those artifacts, so once I do submit, if it doesn't score, I have to look around to find an area where it might be. For instance, we found this giant room with lots of shelves and stuff, and that's a great place to put a cell phone, and sure enough, that's where the cell phone was.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
We pride ourselves on our autonomy. From the very beginning, that was our goal, and actually in earlier competitions I had very little control over the robot, I could not even send it a goal point. All I was getting was reports—it was a one-way street of information. I might have been able to stop the robot, but that was about it. Later on, we added the goal point capability and an option to drive the robot if I need to take over to get it out of a situation.
I'm actually the lead for our Virtual Track team as well, and that's already decision-free. We're running the exact same software stack on our robots, and the only difference is that the virtual system also does artifact reporting. Honestly, I'd say that we're more effective having the human be able to make some decisions, but the exact same system works pretty well without having any human at all.
Bonus operator question: How much sleep did you get last night?
I got eight hours, and I could have had more, except I sat around watching TV for a while. We stressed ourselves out a lot during the first two competitions, and we had so many problems. It was horrible, so we said, “we're not doing that again!” A lot of our problems started with the setup and launching phase, just getting the robots started up and ready to go and out of the gate. So we spent a ton of time making sure that our startup procedures were all automated. And when you're able to start up easily, things just go well.
Team ExplorerRobot Operator: Chao CaoTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We tried to diversify our robots for the different kinds of environments in the challenge. We have wheeled vehicles, aerial vehicles, and legged vehicles (Spot robots). Our wheeled vehicles are different sizes; two are relatively big and one is smaller, and two are articulated in the middle to give them better mobility performance in rough terrain. Our smaller drones can be launched from the bigger ground robots, and we have a larger drone with better battery life and more payload.
In total, there are 11 robots, which is quite a lot to be managed by a single human operator under a constrained time limit, but if we manage those robots well, we can explore quite a large three dimensional area.
Once your team of robots is on the course, what do you do during the run?
Most of the time, to be honest, it's like playing a video game. It's about allocating resources to gain rewards (which in this case are artifacts) by getting the robots spread out to maximize coverage of the course. I'm monitoring the status of the robots, where they're at, and what they're doing. Most of the time I rely on the autonomy of the robots, including for exploration, coordination between multiple robots, and detecting artifacts. But there are still times when the robots might need my help, for example yesterday one of the bigger robots got itself stuck in the cave branch but I was able to intervene and get it to drive out.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
Humans have a semantic understanding of the environment. Just by looking at a camera image, I can predict what an environment will be like and how risky it will be, but robots don't have that kind of higher level decision capability. So I might want a specific kind of robot to go into a specific kind of environment based on what I see, and I can redirect robots to go into areas that are a better fit for them. For me as an operator, at least from my personal experience, I think it's still quite challenging for robots to perform this kind of semantic understanding, and I still have to make those decisions.
Bonus operator question: What is your flow for decision making?
Before each run, we'll have a discussion among all the team members to figure out a rough game plan, including a deployment sequence—which robots go first, should the drones be launched from the ground vehicles or from the staging area. During the run, things are changing, and I have to make decisions based on the environment. I'll talk to the pit crew about what I can see through the base station, and then I'll make an initial proposal based on my instincts for what I think we should do. But I'm very focused during the run and have a lot of tasks to do, so my teammates will think about time constraints and how conservative we want to be and where other robots are because I can't think through all of those possibilities, and then they'll give me feedback. Usually this back and forth is quick and smooth.

The Robot Operator is the only person allowed to interface with the robots while they're on the course—the operators pretty much controls the entire run by themselves.DARPA
Team CTU-CRAS-NORLABRobot Operator: Vojtech SalnskyTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We chose many different platforms. We have some tracked robots, wheeled robots, Spot robots, and some other experimental UGVs [small hexapods and one big hexapod], and every UGV has a different ability to traverse terrain, and we are trying to cover all possible locomotion types to be able to traverse anything on the course. Besides the UGVs, we're using UAVs as well that are able to go through both narrow corridors and bigger spaces.
We brought a large number of robots, but the number that we're using, about ten, is enough to be able to explore a large part of the environment. Deploying more would be really hard for the pit crew of only five people, and there isn't enough space for more robots.
Once your team of robots is on the course, what do you do during the run?
It differs run by run, but the robots are mostly autonomous, so they decide where to go and I'm looking for artifact detections uploaded by the robots and approving or disapproving them. If I see that a robot is stuck somewhere, I can help it decide where to go. If it looks like a robot may lose communications, I can move some robots to make a chain from other robots to extend our network. I can do high level direction for exploration, but I don't have to—the robots are updating their maps and making decisions to best explore the whole environment.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
Terrain assessment is subtle. At a higher level, the operator has to decide where to send a walking robot and where to send a rolling robot. It's tiny details on the ground and a feeling about the environment that help the operator make those decisions, and that is not done autonomously.
Bonus operator question: How much bandwidth do you have?
I'm on the edge. I have a map, I have some subsampled images, I have detections, I have topological maps, but it would be better to have everything in 4K and dense point clouds.
Team CSIRO Data61Robot Operator: Brendan TiddTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We've got three robot types that are here today—Spot legged robots, big tracked robots called Titans, and drones. The legged ones have been pretty amazing, especially for urban environments with narrow stairs and doorways. The tracked robots are really good in the tricky terrain of cave environments. And the drones can obviously add situational awareness from higher altitudes and detect those high artifacts.
Once your team of robots is on the course, what do you do during the run?
We use the term “operator” but I'm actually supervising. Our robots are all autonomous, they all know how to divide and conquer, they're all going to optimize exploring for depth, trying to split up where they can and not get in each other's way. In particular the Spots and the Titans have a special relationship where the Titan will give way to the Spot if they ever cross paths, for obvious reasons. So my role during the run is to coordinate node placement, that's something that we haven't automated—we've got a lot of information that comes back that I use to decide on good places to put nodes, and probably the next step is to automate that process. I also decide where to launch the drone. The launch itself is one click, but it still requires me to know where a good place is. If everything goes right, in general the robots will just do their thing.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
The node drop thing is vital, but I think it's quite a complex thing to automate because there are so many different aspects to consider. The node mesh is very dynamic, it's affected by all the robots that are around it and obviously by the environment. Similarly, the drone launch, but that requires the robots to know when it's worth it to launch a drone. So those two things, but also pushing on the nav stack to make sure it can handle the crazy stuff. And I guess the other side is the detection. It's not a trivial thing knowing what's a false positive or not, that's a hard thing to automate.
Bonus operator question: How stressed are you, knowing that it's just you controlling all the robots during the run?
Coping with that is a thing! I've got music playing when I'm operating, I actually play in a metal band and we get on stage sometimes and the feeling is very similar, so it's really helpful to have the music there. But also the team, you know? I'm confident in our system, and if I wasn't, that would really affect my mental state. But we test a lot, and all that preparedness helps with the stress.
Team CoSTARRobot Operator: Kyohei OtsuTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We have wheeled vehicles, legged vehicles, and aerial drones, so we can cover many terrains, handle stairs, and fly over obstacles. We picked three completely different mobility systems to be able to use many different strategies. The robots can autonomously adjust their roles by themselves; some explore, some help with communication for other robots. The number of robots we use depends on the environment—yesterday we deployed seven robots onto the course because we assumed that the environment would be huge, but it's a bit smaller than we expected, so we'll adapt our number to fit that environment.
Once your team of robots is on the course, what do you do during the run?
Our robots are autonomous, and I think we have very good autonomy software. During setup the robots need some operator attention; I have to make sure that everything is working including sensors, mobility systems, and all the algorithms. But after that, once I send the robot into the course, I totally forget about it and focus on another robot. Sometimes I intervene to better distribute our team of robots—that's something that a human is good at, using prior knowledge to understand the environment. And I look at artifact reports, that's most of my job.
In the first phases of the Subterranean Challenge, we were getting low level information from the robots and sometimes using low level commands. But as the project proceeded and our technology matured, we found that it was too difficult for the operator, so we added functionality for the robot to make all of those low level decisions, and the operator just deals with high level decisions.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible? [answered by CoSTAR co-Team Lead Joel Burdick]
Two things: the system reports that it thinks it found an artifact, and the operator has to confirm yes or no. He has to also confirm that the location seems right. The other thing is that our multi-robot coordination isn't as sophisticated as it could be, so the operator may have to retask robots to different areas. If we had another year, we'd be much closer to automating those things.
Bonus Operator Question: Would you prefer if your system was completely autonomous and your job was not necessary?
Yeah, I'd prefer that!
Team Coordinated RoboticsRobot Operator: Kevin KnoedlerTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
The ideal mix in my mind is a fleet of small drones with lidar, but they are very hard to test, and very hard to get right. Ground vehicles aren't necessarily easier to get right, but they're easier to test, and if you can test something, you're a lot more likely to succeed. So that's really the big difference with the team of robots we have here.
Once your team of robots is on the course, what do you do during the run?
Some of the robots have an automatic search function where if they find something they report back, and what I'd like to be doing is just monitoring. But, the search function only works in larger areas. So right now the goal is for me to drive them through the narrow areas, get them into the wider areas, and let them go, but getting them to that search area is something that I mostly need to do manually one at a time.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
Ideally, the robots would be able to get through those narrow areas on their own. It's actually a simpler problem to solve than larger areas, it's just not where we focused our effort.
Bonus operator question: How many interfaces do you use to control your robots?
We have one computer with two monitors, one controller, and that's it.
Team CERBERUSRobot Operator: Marco TranzattoTell me about the team of robots that you're operating and why you think it's the optimal team for exploring underground environments.
We have a mix of legged and flying robots, supported by a rover carrying a wireless antenna. The idea is to take legged robots for harsh environments where wheel robots may not perform as well, combined with aerial scouts that can explore the environment fast to provide initial situational awareness to the operator so that I can decide where to deploy the legged machines. So the goal is to combine the legged and flying robots in a unified mission to give as much information as possible to the human operator. We also had some bigger robots, but we found them to be a bit too big for the environment that DARPA has prepared for us, so we're not going to deploy them.
Once your team of robots is on the course, what do you do during the run?
We use two main modes: one is fully autonomous on the robots, and the other one is supervised autonomy where I have an overview of what the robots are doing and can override specific actions. Based on the high level information that I can see, I can decide to control a single robot to give it a manual waypoint to reposition it to a different frontier inside the environment. I can go from high level control down to giving these single commands, but the commands are still relatively high level, like “go here and explore.” Each robot has artifact scoring capabilities, and all these artifact detections are sent to the base station once the robot is in communication range, and the human operator has to say, “okay this looks like a possible artifact so I accept it” and then can submit the position either as reported by the robot or the optimized position reported by the mapping server.
What autonomous decisions would you like your robots to be able to make that they aren't currently making, and what would it take to make that possible?
Each robot is autonomous by itself. But the cooperation between robots is still like… The operator has to set bounding boxes to tell each robot where to explore. The operator has a global overview, and then inside these boxes, the robots are autonomous. So I think at the moment in our pipeline, we still need a centralized human supervisor to say which robot explores in which direction. We are close to automating this, but we're not there yet.
Bonus operator question: What is one thing you would add to make your life as an operator easier?
I would like to have a more centralized way to give commands to the robots. At the moment I need to select each robot and give it a specific command. It would be very helpful to have a centralized map where I can tell a robot to say explore in a given area while considering data from a different robot. This was in our plan, but we didn't manage to deploy it yet. Continue reading

Posted in Human Robots

#439753 DARPA SubT Finals: Meet the Teams

This is it! This week, we're at the DARPA SubTerranean Challenge Finals in Louisville KY, where more than two dozen Systems Track and Virtual Track teams will compete for millions of dollars in prize money and being able to say “we won a DARPA challenge,” which is of course priceless.

We've been following SubT for years, from Tunnel Circuit to Urban Circuit to Cave (non-) Circuit. For a recent recap, have a look at this post-cave pre-final article that includes an interview with SubT Program Manager Tim Chung, but if you don't have time for that, the TLDR is that this week we're looking at both a Virtual Track as well as a Systems Track with physical robots on a real course. The Systems Track teams spent Monday checking in at the Louisville Mega Cavern competition site, and we asked each team to tell us about how they've been preparing, what they think will be most challenging, and what makes them unique.

Team CERBERUS

Team CERBERUS

CERBERUS

Country

USA, Switzerland, United Kingdom, Norway

Members

University of Nevada, Reno

ETH Zurich, Switzerland

University of California, Berkeley

Sierra Nevada Corporation

Flyability, Switzerland

Oxford Robotics Institute, United Kingdom

Norwegian University for Science and Technology (NTNU), Norway

Robots

TBA

Follow Team

Website

@CerberusSubt

Q&A: Team Lead Kostas Alexis

How have you been preparing for the SubT Final?

First of all this year's preparation was strongly influenced by Covid-19 as our team spans multiple countries, namely the US, Switzerland, Norway, and the UK. Despite the challenges, we leveled up both our weekly shake-out events and ran a 2-month team-wide integration and testing activity in Switzerland during July and August with multiple tests in diverse underground settings including multiple mines. Note that we bring a brand new set of 4 ANYmal C robots and a new generation of collision-tolerant flying robots so during this period we further built new hardware.

What do you think the biggest challenge of the SubT Final will be?

We are excited to see how the combination of vastly large spaces available in Mega Caverns can be combined with very narrow cross-sections as DARPA promises and vertical structures. We think that terrain with steep slopes and other obstacles, complex 3D geometries, as well as the dynamic obstacles will be the core challenges.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Our team coined early on the idea of legged and flying robot combination. We have remained focused on this core vision of ours and also bring fully own-developed hardware for both legged and flying systems. This is both our advantage and – in a way – our limitation as we spend a lot of time in its development. We are fully excited about the potential we see developing and we are optimistic that this will be demonstrated in the Final Event!

Team Coordinated Robotics

Team Coordinated Robotics

Coordinated Robotics

Country

USA

Members

California State University Channel Islands

Oke Onwuka

Sequoia Middle School

Robots

TBA

Q&A: Team Lead Kevin Knoedler

How have you been preparing for the SubT Final?

Coordinated Robotics has been preparing for the SubT Final with lots of testing on our team of robots. We have been running them inside, outside, day, night and all of the circumstances that we can come up with. In Kentucky we have been busy updating all of the robots to the same standard and repairing bits of shipping damage before the Subt Final.

What do you think the biggest challenge of the SubT Final will be?

The biggest challenge for us will be pulling all of the robots together to work as a team and make sure that everything is communicating together. We did not have lab access until late July and so we had robots at individuals homes, but were generally only testing one robot at a time.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Coordinated Robotics is unique in a couple of different ways. We are one of only two unfunded teams so we take a lower budget approach to solving lots of the issues and that helps us to have some creative solutions. We are also unique in that we will be bringing a lot of robots (23) so that problems with individual robots can be tolerated as the team of robots continues to search.

Team CoSTAR

Team CoSTAR

CoSTAR

Country

USA, South Korea, Sweden

Members

Jet Propulsion Laboratory

California Institute of Technology

Massachusetts Institute of Technology

KAIST, South Korea

Lulea University of Technology, Sweden

Robots

TBA

Follow Team

Website

Q&A: Caltech Team Lead Joel Burdick

How have you been preparing for the SubT Final?

Since May, the team has made 4 trips to a limestone cave near Lexington Kentucky (and they are just finishing a week-long “game” there yesterday). Since February, parts or all of the team have been testing 2-3 days a week in a section of the abandoned Subway system in downtown Los Angeles.

What do you think the biggest challenge of the SubT Final will be?

That will be a tough one to answer in advance. The expected CoSTAR-specific challenges are of course the complexity of the test-site that DARPA has prepared, fatigue of the team, and the usual last-minute hardware failures: we had to have an entire new set of batteries for all of our communication nodes FedExed to us yesterday. More generally, we expect the other teams to be well prepared. Speaking only for myself, I think there will be 4-5 teams that could easily win this competition.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Previously, our team was unique with our Boston Dynamic legged mobility. We've heard that other teams maybe using Spot quadrupeds as well. So, that may no longer be a uniqueness. We shall see! More importantly, we believe our team is unique in the breadth of the participants (university team members from U.S., Europe, and Asia). Kind of like the old British empire: the sun never sets on the geographic expanse of Team CoSTAR.

Team CSIRO Data61

Team CSIRO Data61

CSIRO Data61

Country

Australia, USA

Members

Commonwealth Scientific and Industrial Research Organisation, Australia

Emesent, Australia

Georgia Institute of Technology

Robots

TBA

Follow Team

Website

Twitter

Q&A: SubT Principal Investigator Navinda Kottege

How have you been preparing for the SubT Final?

Test, test, test. We've been testing as often as we can, simulating the competition conditions as best we can. We're very fortunate to have an extensive site here at our CSIRO lab in Brisbane that has enabled us to construct quite varied tests for our full fleet of robots. We have also done a number of offsite tests as well.

After going through the initial phases, we have converged on a good combination of platforms for our fleet. Our work horse platform from the Tunnel circuit has been the BIA5 ATR tracked robot. We have recently added Boston Dynamics Spot quadrupeds to our fleet and we are quite happy with their performance and the level of integration with our perception and navigation stack. We also have custom designed Subterra Navi drones from Emesent. Our fleet consists of two of each of these three platform types. We have also designed and built a new 'Smart node' for communication with the Rajant nodes. These are dropped from the tracked robots and automatically deploy after a delay by extending out ground plates and antennae. As described above, we have been doing extensive integration testing with the full system to shake out bugs and make improvements.

What do you think the biggest challenge of the SubT Final will be?

The biggest challenge is the unknown. It is always a learning process to discover how the robots respond to new classes of obstacle; responding to this on the fly in a new environment is extremely challenging. Given the format of two preliminary runs and one prize run, there is little to no margin for error compared to previous circuit events where there were multiple runs that contributed to the final score. Any significant damage to robots during the preliminary runs would be difficult to recover from to perform in the final run.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Our fleet uses a common sensing, mapping and navigation system across all robots, built around our Wildcat SLAM technology. This is what enables coordination between robots, and provides the accuracy required to locate detected objects. This had allowed us to easily integrate different robot platforms into our fleet. We believe this 'homogenous sensing on heterogenous platforms' paradigm gives us a unique advantage in reducing overall complexity of the development effort for the fleet and also allowing us to scale our fleet as needed. Having excellent partners in Emesent and Georgia Tech and having their full commitment and support is also a strong advantage for us.

Team CTU-CRAS-NORLAB

Team CTU-CRAS-NORLAB

CTU-CRAS-NORLAB

Country

Czech Republic, Canada

Members

Czech Technological University, Czech Republic

Université Laval, Canada

Robots

TBA

Follow Team

Website
Twitter

Q&A: Team Lead Tomas Svoboda

How have you been preparing for the SubT Final?

We spent most of the time preparing new platforms as we made a significant technology update. We tested the locomotion and autonomy of the new platforms in Bull Rock Cave, one of the largest caves in Czechia. We also deployed the robots in an old underground fortress to examine the system in an urban-like underground environment. The very last weeks were, however, dedicated to integration tests and system tuning.

What do you think the biggest challenge of the SubT Final will be?

Hard to say, but regarding the expected environment, the vertical shafts might be the most challenging since they are not easy to access to test and tune the system experimentally. They would also add challenges to communication.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Not sure about the other teams, but we plan to deploy all kinds of ground vehicles, tracked, wheeled, and legged platforms accompanied by several drones. We hope the diversity of the platform types would be beneficial for adapting to the possible diversity of terrains and underground challenges. Besides, we also hope the tuned communication would provide access to robots in a wider range than the last time. Optimistically, we might keep all robots connected to the communication infrastructure built during the mission, albeit the bandwidth is very limited, but should be sufficient for artifacts reporting and high-level switching of the robots' goals and autonomous behavior.

Team Explorer

Team Explorer

Explorer

Country

USA

Members

Carnegie Mellon University

Oregon State University

Robots

TBA

Follow Team

Website
Facebook

Q&A: Team Co-Lead Sebastian Scherer

How have you been preparing for the SubT Final?

Since we expect DARPA to have some surprises on the course for us, we have been practicing in a wide range of different courses around Pittsburgh including an abandoned hospital complex, a cave and limestone and coal mines. As the finals approached, we were practicing at these locations nearly daily, with debrief and debugging sessions afterward. This has helped us find the advantages of each of the platforms, ways of controlling them, and the different sensor modalities.

What do you think the biggest challenge of the SubT Final will be?

For our team the biggest challenges are steep slopes for the ground robots and thin loose obstacles that can get sucked into the props for the drones as well as narrow passages.

What is one way in which your team is unique, and why will that be an advantage during the competition?

We have developed a heterogeneous team for SubT exploration. This gives us an advantage since there is not a single platform that is optimal for all SubT environments. Tunnels are optimal for roving robots, urban environments for walking robots, and caves for flying. Our ground robots and drones are custom-designed for navigation in rough terrain and tight spaces. This gives us an advantage since we can get to places not reachable by off-the-shelf platforms.

Team MARBLE

Team MARBLE

MARBLE

Country

USA

Members

University of Colorado, Boulder

University of Colorado, Denver

Scientific Systems Company, Inc.

University of California, Santa Cruz

Robots

TBA

Follow Team

Twitter

Q&A: Project Engineer Gene Rush

How have you been preparing for the SubT Final?

Our team has worked tirelessly over the past several months as we prepare for the SubT Final. We have invested most of our time and energy in real-world field deployments, which help us in two major ways. First, it allows us to repeatedly test the performance of our full autonomy stack, and second, it provides us the opportunity to emphasize Pit Crew and Human Supervisor training. Our PI, Sean Humbert, has always said “practice, practice, practice.” In the month leading up to the event, we stayed true to this advice by holding 10 deployments across a variety of environments, including parking garages, campus buildings at the University of Colorado Boulder, and the Edgar Experimental Mine.

What do you think the biggest challenge of the SubT Final will be?

I expect the most difficult challenge will is centered around autonomous high-level decision making. Of course, mobility challenges, including treacherous terrain, stairs, and drop offs will certainly test the physical capabilities of our mobile robots. However, the scale of the environment is so great, and time so limited, that rapidly identifying the areas that likely have human survivors is vitally important and a very difficult open challenge. I expect most teams, ours included, will utilize the intuition of the Human Supervisor to make these decisions.

What is one way in which your team is unique, and why will that be an advantage during the competition?

Our team has pushed on advancing hands-off autonomy, so our robotic fleet can operate independently in the worst case scenario: a communication-denied environment. The lack of wireless communication is relatively prevalent in subterranean search and rescue missions, and therefore we expect DARPA will be stressing this part of the challenge in the SubT Final. Our autonomy solution is designed in such a way that it can operate autonomously both with and without communication back to the Human Supervisor. When we are in communication with our robotic teammates, the Human Supervisor has the ability to provide several high level commands to assist the robots in making better decisions.

Team Robotika

Team Robotika

Robotika

Country

Czech Republic, USA, Switzerland

Members

Robotika International, Czech Republic and United States

Robotika.cz, Czech Republic

Czech University of Life Science, Czech Republic

Centre for Field Robotics, Czech Republic

Cogito Team, Switzerland

Robots

Two wheeled robots

Follow Team

Website
Twitter

Q&A: Team Lead Martin Dlouhy

How have you been preparing for the SubT Final?

Our team participates in both Systems and Virtual tracks. We were using the virtual environment to develop and test our ideas and techniques and once they were sufficiently validated in the virtual world, we would transfer these results to the Systems track as well. Then, to validate this transfer, we visited a few underground spaces (mostly caves) with our physical robots to see how they perform in the real world.

What do you think the biggest challenge of the SubT Final will be?

Besides the usual challenges inherent to the underground spaces (mud, moisture, fog, condensation), we also noticed the unusual configuration of the starting point which is a sharp downhill slope. Our solution is designed to be careful about going on too steep slopes so our concern is that as things stand, the robots may hesitate to even get started. We are making some adjustments in the remaining time to account for this. Also, unlike the environment in all the previous rounds, the Mega Cavern features some really large open spaces. Our solution is designed to expect detection of obstacles somewhere in the vicinity of the robot at any given point so the concern is that a large open space may confuse its navigational system. We are looking into handling such a situation better as well.

What is one way in which your team is unique, and why will that be an advantage during the competition?

It appears that we are unique in bringing only two robots into the Finals. We have brought more into the earlier rounds to test different platforms and ultimately picked the two we are fielding this time as best suited for the expected environment. A potential benefit for us is that supervising only two robots could be easier and perhaps more efficient than managing larger numbers. Continue reading

Posted in Human Robots

#439100 Video Friday: Robotic Eyeball Camera

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

What if seeing devices looked like us? Eyecam is a prototype exploring the potential future design of sensing devices. Eyecam is a webcam shaped like a human eye that can see, blink, look around and observe us.

And it's open source, so you can build your own!

[ Eyecam ]

Looks like Festo will be turning some of its bionic robots into educational kits, which is a pretty cool idea.

[ Bionics4Education ]

Underwater soft robots are challenging to model and control because of their high degrees of freedom and their intricate coupling with water. In this paper, we present a method that leverages the recent development in differentiable simulation coupled with a differentiable, analytical hydrodynamic model to assist with the modeling and control of an underwater soft robot. We apply this method to Starfish, a customized soft robot design that is easy to fabricate and intuitive to manipulate.

[ MIT CSAIL ]

Rainbow Robotics, the company who made HUBO, has a new collaborative robot arm.

[ Rainbow Robotics ]

Thanks Fan!

We develop an integrated robotic platform for advanced collaborative robots and demonstrates an application of multiple robots collaboratively transporting an object to different positions in a factory environment. The proposed platform integrates a drone, a mobile manipulator robot, and a dual-arm robot to work autonomously, while also collaborating with a human worker. The platform also demonstrates the potential of a novel manufacturing process, which incorporates adaptive and collaborative intelligence to improve the efficiency of mass customization for the factory of the future.

[ Paper ]

Thanks Poramate!

In Sevastopol State University the team of the Laboratory of Underwater Robotics and Control Systems and Research and Production Association “Android Technika” performed tests of an underwater anropomorphic manipulator robot.

[ Sevastopol State ]

Thanks Fan!

Taiwanese company TCI Gene created a COVID test system based on their fully automated and enclosed gene testing machine QVS-96S. The system includes two ABB robots and carries out 1800 tests per day, operating 24/7. Every hour 96 virus samples tests are made with an accuracy of 99.99%.

[ ABB ]

A short video showing how a Halodi Robotics can be used in a commercial guarding application.

[ Halodi ]

During the past five years, under the NASA Early Space Innovations program, we have been developing new design optimization methods for underactuated robot hands, aiming to achieve versatile manipulation in highly constrained environments. We have prototyped hands for NASA’s Astrobee robot, an in-orbit assistive free flyer for the International Space Station.

[ ROAM Lab ]

The new, improved OTTO 1500 is a workhorse AMR designed to move heavy payloads through demanding environments faster than any other AMR on the market, with zero compromise to safety.

[ ROAM Lab ]

Very, very high performance sensing and actuation to pull this off.

[ Ishikawa Group ]

We introduce a conversational social robot designed for long-term in-home use to help with loneliness. We present a novel robot behavior design to have simple self-reflection conversations with people to improve wellness, while still being feasible, deployable, and safe.

[ HCI Lab ]

We are one of the 5 winners of the Start-up Challenge. This video illustrates what we achieved during the Swisscom 5G exploration week. Our proof-of-concept tele-excavation system is composed of a Menzi Muck M545 walking excavator automated & customized by Robotic Systems Lab and IBEX motion platform as the operator station. The operator and remote machine are connected for the first time via a 5G network infrastructure which was brought to our test field by Swisscom.

[ RSL ]

This video shows LOLA balancing on different terrain when being pushed in different directions. The robot is technically blind, not using any camera-based or prior information on the terrain (hard ground is assumed).

[ TUM ]

Autonomous driving when you cannot see the road at all because it's buried in snow is some serious autonomous driving.

[ Norlab ]

A hierarchical and robust framework for learning bipedal locomotion is presented and successfully implemented on the 3D biped robot Digit. The feasibility of the method is demonstrated by successfully transferring the learned policy in simulation to the Digit robot hardware, realizing sustained walking gaits under external force disturbances and challenging terrains not included during the training process.

[ OSU ]

This is a video summary of the Center for Robot-Assisted Search and Rescue's deployments under the direction of emergency response agencies to more than 30 disasters in five countries from 2001 (9/11 World Trade Center) to 2018 (Hurricane Michael). It includes the first use of ground robots for a disaster (WTC, 2001), the first use of small unmanned aerial systems (Hurricane Katrina 2005), and the first use of water surface vehicles (Hurricane Wilma, 2005).

[ CRASAR ]

In March, a team from the Oxford Robotics Institute collected a week of epic off-road driving data, as part of the Sense-Assess-eXplain (SAX) project.

[ Oxford Robotics ]

As a part of the AAAI 2021 Spring Symposium Series, HEBI Robotics was invited to present an Industry Talk on the symposium's topic: Machine Learning for Mobile Robot Navigation in the Wild. Included in this presentation was a short case study on one of our upcoming mobile robots that is being designed to successfully navigate unstructured environments where today's robots struggle.

[ HEBI Robotics ]

Thanks Hardik!

This Lockheed Martin Robotics Seminar is from Chad Jenkins at the University of Michigan, on “Semantic Robot Programming… and Maybe Making the World a Better Place.”

I will present our efforts towards accessible and general methods of robot programming from the demonstrations of human users. Our recent work has focused on Semantic Robot Programming (SRP), a declarative paradigm for robot programming by demonstration that builds on semantic mapping. In contrast to procedural methods for motion imitation in configuration space, SRP is suited to generalize user demonstrations of goal scenes in workspace, such as for manipulation in cluttered environments. SRP extends our efforts to crowdsource robot learning from demonstration at scale through messaging protocols suited to web/cloud robotics. With such scaling of robotics in mind, prospects for cultivating both equal opportunity and technological excellence will be discussed in the context of broadening and strengthening Title IX and Title VI.

[ UMD ] Continue reading

Posted in Human Robots

#439095 DARPA Prepares for the Subterranean ...

The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.

It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.

Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.

The Louisville Mega Cavern is a former limestone mine, most of which is under the Louisville Zoo. It’s not all that deep, mostly less than 30 meters under the surface, but it’s enormous: with 370,000 square meters of rooms and passages, the cavern currently hosts (among other things) a business park, a zipline course, and mountain bike trails, because why not. While DARPA is keeping pretty quiet on the details, I’m guessing that they’ll be taking over a chunk of the cavern and filling it with features representing as many of the environmental challenges as they can.

To learn more about how the SubT Final Event is going to go, we spoke with SubT Program Manager Tim Chung. But first, we talked about Tim’s perspective on the success of the Urban Circuit, and how teams have been managing without an in-person Cave Circuit.

IEEE Spectrum: How did the SubT Urban Circuit go?

Tim Chung: On a couple fronts, Urban Circuit was really exciting. We were in this unfinished nuclear power plant—I’d be surprised if any of the competitors had prior experience in such a facility, or anything like it. I think that was illuminating both from an experiential point of view for the competitors, but also from a technology point of view, too.

One thing that I thought was really interesting was that we, DARPA, didn't need to make the venue more challenging. The real world is really that hard. There are places that were just really heinous for these robots to have to navigate through in order to look in every nook and cranny for artifacts. There were corners and doorways and small corridors and all these kind of things that really forced the teams to have to work hard, and the feedback was, why did DARPA have to make it so hard? But we didn’t, and in fact there were places that for the safety of the robots and personnel, we had to ensure the robots couldn’t go.

It sounds like some teams thought this course was on the more difficult side—do you think you tuned it to just the right amount of DARPA-hard?

Our calibration worked quite well. We were able to tease out and help refine and better understand what technologies are both useful and critical and also those technologies that might not necessarily get you the leap ahead capability. So as an example, the Urban Circuit really emphasized verticality, where you have to be able to sense, understand, and maneuver in three dimensions. Being able to capitalize on their robot technologies to address that verticality really stratified the teams, and showed how critical those capabilities are.

We saw teams that brought a lot of those capabilities do very well, and teams that brought baseline capabilities do what they could on the single floor that they were able to operate on. And so I think we got the Goldilocks solution for Urban Circuit that combined both difficulty and ambition.

Photos: Evan Ackerman/IEEE Spectrum

Two SubT Teams embedded networking equipment in balls that they could throw onto the course.

One of the things that I found interesting was that two teams independently came up with throwable network nodes. What was DARPA’s reaction to this? Is any solution a good solution, or was it more like the teams were trying to game the system?

You mean, do we want teams to game the rules in any way so as to get a competitive advantage? I don't think that's what the teams were doing. I think they were operating not only within the bounds of the rules, which permitted such a thing as throwable sensors where you could stand at the line and see how far you could chuck these things—not only was that acceptable by the rules, but anticipated. Behind the scenes, we tried to do exactly what these teams are doing and think through different approaches, so we explicitly didn't forbid such things in our rules because we thought it's important to have as wide an aperture as possible.

With these comms nodes specifically, I think they’re pretty clever. They were in some cases hacked together with a variety of different sports paraphernalia to see what would provide the best cushioning. You know, a lot of that happens in the field, and what it captured was that sometimes you just need to be up at two in the morning and thinking about things in a slightly different way, and that's when some nuggets of innovation can arise, and we see this all the time with operators in the field as well. They might only have duct tape or Styrofoam or whatever the case may be and that's when they come up with different ways to solve these problems. I think from DARPA’s perspective, and certainly from my perspective, wherever innovation can strike, we want to try to encourage and inspire those opportunities. I thought it was great, and it’s all part of the challenge.

Is there anything you can tell us about what your original plan had been for the Cave Circuit?

I can say that we’ve had the opportunity to go through a number of these caves scattered all throughout the country, and engage with caving communities—cavers clubs, speleologists that conduct research, and then of course the cave rescue community. The single biggest takeaway
is that every cave, and there are tens of thousands of them in the US alone, every cave has its own personality, and a lot of that personality is quite hidden from humans, because we can’t explore or access all of the cave. This led us to a number of different caves that were intriguing from a DARPA perspective but also inspirational for our Cave Circuit Virtual Competition.

How do you feel like the tuning was for the Virtual Cave Circuit?

The Virtual Competition, as you well know, was exciting in the sense that we could basically combine eight worlds into one competition, whereas the systems track competition really didn’t give us that opportunity. Even if we were able have held the Cave Circuit Systems Competition in person, it would have been at one site, and it would have been challenging to represent the level of diversity that we could with the Virtual Competition. So I think from that perspective, it’s clearly an advantage in terms of calibration—diversity gets you the ability to aggregate results to capture those that excel across all worlds as well as those that do well in one world or some worlds and not the others. I think the calibration was great in the sense that we were able to see the gamut of performance. Those that did well, did quite well, and those that have room to grow showed where those opportunities are for them as well.

We had to find ways to capture that diversity and that representativeness, and I think one of the fun ways we did that was with the different cave world tiles that we were able to combine in a variety of different ways. We also made use of a real world data set that we were able to take from a laser scan. Across the board, we had a really great chance to illustrate why virtual testing and simulation still plays such a dominant role in robotics technology development, and why I think it will continue to play an increasing role for developing these types of autonomy solutions.

Photo: Team CSIRO Data 61

How can systems track teams learn from their testing in whatever cave is local to them and effectively apply that to whatever cave environment is part of the final considering what the diversity of caves is?

I think that hits the nail on the head for what we as technologists are trying to discover—what are the transferable generalizable insights and how does that inform our technology development? As roboticists we want to optimize our systems to perform well at the tasks that they were designed to do, and oftentimes that means specialization because we get increased performance at the expense of being a generalist robot. I think in the case of SubT, we want to have our cake and eat it too—we want robots that perform well and reliably, but we want them to do so not just in one environment, which is how we tend to think about robot performance, but we want them to operate well in many environments, many of which have yet to be faced.

And I think that's kind of the nuance here, that we want robot systems to be generalists for the sake of being able to handle the unknown, namely the real world, but still achieve a high level of performance and perhaps they do that to their combined use of different technologies or advances in autonomy or perception approaches or novel mechanisms or mobility, but somehow they're still able, at least in aggregate, to achieve high performance.

We know these teams eagerly await any type of clue that DARPA can provide like about the SubT environments. From the environment previews for Tunnel, Urban, and even Cave, the teams were pivoting around and thinking a little bit differently. The takeaway, however, was that they didn't go to a clean sheet design—their systems were flexible enough that they could incorporate some of those specialist trends while still maintaining the notion of a generalist framework.

Looking ahead to the SubT Final, what can you tell us about the Louisville Mega Cavern?

As always, I’ll keep you in suspense until we get you there, but I can say that from the beginning of the SubT Challenge we had always envisioned teams of robots that are able to address not only the uncertainty of what's right in front of them, but also the uncertainty of what comes next. So I think the teams will be advantaged by thinking through subdomain awareness, or domain awareness if you want to generalize it, whether that means tuning multi-purpose robots, or deploying different robots, or employing your team of robots differently. Knowing which subdomain you are in is likely to be helpful, because then you can take advantage of those unique lessons learned through all those previous experiences then capitalize on that.

As far as specifics, I think the Mega Cavern offers many of the features important to what it means to be underground, while giving DARPA a pretty blank canvas to realize our vision of the SubT Challenge.

The SubT Final will be different from the earlier circuits in that there’s just one 60-minute run, rather than two. This is going to make things a lot more stressful for teams who have experienced bad robot days—why do it this way?

The preliminary round has two 30-minute runs, and those two runs are very similar to how we have done it during the circuits, of a single run per configuration per course. Teams will have the opportunity to show that their systems can face the obstacles in the final course, and it's the sum of those scores much like we did during the circuits, to help mitigate some of the concerns that you mentioned of having one robot somehow ruin their chances at a prize.

The prize round does give DARPA as well as the community a chance to focus on the top six teams from the preliminary round, and allows us to understand how they came to be at the top of the pack while emphasizing their technological contributions. The prize round will be one and done, but all of these teams we anticipate will be putting their best robot forward and will show the world why they deserve to win the SubT Challenge.

We’ve always thought that when called upon these robots need to operate in really challenging environments, and in the context of real world operations, there is no second chance. I don't think it's actually that much of a departure from our interests and insistence on bringing reliable technologies to the field, and those teams that might have something break here and there, that's all part of the challenge, of being resilient. Many teams struggled with robots that were debilitated on the course, and they still found ways to succeed and overcome that in the field, so maybe the rules emphasize that desire for showing up and working on game day which is consistent, I think, with how we've always envisioned it. This isn’t to say that these systems have to work perfectly, they just have to work in a way such that the team is resilient enough to tackle anything that they face.

It’s not too late for teams to enter for both the Virtual Track and the Systems Track to compete in the SubT Final, right?

Yes, that's absolutely right. Qualifications are still open, we are eager to welcome new teams to join in along with our existing competitors. I think any dark horse competitors coming into the Finals may be able to bring something that we haven't seen before, and that would be really exciting. I think it'll really make for an incredibly vibrant and illuminating final event.

The final event qualification deadline for the Systems Competition is April 21, and the qualification deadline for the Virtual Competition is June 29. More details here. Continue reading

Posted in Human Robots

#439066 Video Friday: Festo’s BionicSwift

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.

To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.

During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.

[ Festo ]

While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.

It's quite the technical challenge, but it has the potential to be both more efficient and more effective.

[ Fraunhofer ]

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.

[ MIT ]

Ingenuity is now scheduled to fly on April 11.

[ JPL ]

The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”

[ Zenta ]

It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.

[ SA Police ]

SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.

[ SoftBank ]

MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.

[ MAB Robotics ]

Thanks Jakub!

DoraNose: Smell your way to a better tomorrow.

[ Dorabot ]

Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.

[ Energy Robotics ]

When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.

Now do it from orbit!

[ Squishy Robotics ]

An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.

[ Hybrid Robotics ]

How to prove that your drone is waterproof.

[ UNL ]

Well this ought to be pretty good once it gets out of simulation.

[ Hybrid Robotics ]

MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.

[ Aurora ]

The robots​ of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater​ structures, for which they are tested in the North Sea near Heligoland​.

[ DFKI ]

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

[ 60 Minutes ]

In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.

[ ICRA 2020 ]

In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.

[ Stanford HAI ]

This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”

The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.

[ UPenn ] Continue reading

Posted in Human Robots