Tag Archives: current

#431362 Does Regulating Artificial Intelligence ...

Some people are afraid that heavily armed artificially intelligent robots might take over the world, enslaving humanity—or perhaps exterminating us. These people, including tech-industry billionaire Elon Musk and eminent physicist Stephen Hawking, say artificial intelligence technology needs to be regulated to manage the risks. But Microsoft founder Bill Gates and Facebook’s Mark Zuckerberg disagree, saying the technology is not nearly advanced enough for those worries to be realistic.
As someone who researches how AI works in robotic decision-making, drones and self-driving vehicles, I’ve seen how beneficial it can be. I’ve developed AI software that lets robots working in teams make individual decisions as part of collective efforts to explore and solve problems. Researchers are already subject to existing rules, regulations and laws designed to protect public safety. Imposing further limitations risks reducing the potential for innovation with AI systems.
How is AI regulated now?
While the term “artificial intelligence” may conjure fantastical images of human-like robots, most people have encountered AI before. It helps us find similar products while shopping, offers movie and TV recommendations, and helps us search for websites. It grades student writing, provides personalized tutoring, and even recognizes objects carried through airport scanners.
In each case, the AI makes things easier for humans. For example, the AI software I developed could be used to plan and execute a search of a field for a plant or animal as part of a science experiment. But even as the AI frees people from doing this work, it is still basing its actions on human decisions and goals about where to search and what to look for.
In areas like these and many others, AI has the potential to do far more good than harm—if used properly. But I don’t believe additional regulations are currently needed. There are already laws on the books of nations, states, and towns governing civil and criminal liabilities for harmful actions. Our drones, for example, must obey FAA regulations, while the self-driving car AI must obey regular traffic laws to operate on public roadways.
Existing laws also cover what happens if a robot injures or kills a person, even if the injury is accidental and the robot’s programmer or operator isn’t criminally responsible. While lawmakers and regulators may need to refine responsibility for AI systems’ actions as technology advances, creating regulations beyond those that already exist could prohibit or slow the development of capabilities that would be overwhelmingly beneficial.
Potential risks from artificial intelligence
It may seem reasonable to worry about researchers developing very advanced artificial intelligence systems that can operate entirely outside human control. A common thought experiment deals with a self-driving car forced to make a decision about whether to run over a child who just stepped into the road or veer off into a guardrail, injuring the car’s occupants and perhaps even those in another vehicle.
Musk and Hawking, among others, worry that a hyper-capable AI system, no longer limited to a single set of tasks like controlling a self-driving car, might decide it doesn’t need humans anymore. It might even look at human stewardship of the planet, the interpersonal conflicts, theft, fraud, and frequent wars, and decide that the world would be better without people.
Science fiction author Isaac Asimov tried to address this potential by proposing three laws limiting robot decision-making: Robots cannot injure humans or allow them “to come to harm.” They must also obey humans—unless this would harm humans—and protect themselves, as long as this doesn’t harm humans or ignore an order.
But Asimov himself knew the three laws were not enough. And they don’t reflect the complexity of human values. What constitutes “harm” is an example: Should a robot protect humanity from suffering related to overpopulation, or should it protect individuals’ freedoms to make personal reproductive decisions?
We humans have already wrestled with these questions in our own, non-artificial intelligences. Researchers have proposed restrictions on human freedoms, including reducing reproduction, to control people’s behavior, population growth, and environmental damage. In general, society has decided against using those methods, even if their goals seem reasonable. Similarly, rather than regulating what AI systems can and can’t do, in my view it would be better to teach them human ethics and values—like parents do with human children.
Artificial intelligence benefits
People already benefit from AI every day—but this is just the beginning. AI-controlled robots could assist law enforcement in responding to human gunmen. Current police efforts must focus on preventing officers from being injured, but robots could step into harm’s way, potentially changing the outcomes of cases like the recent shooting of an armed college student at Georgia Tech and an unarmed high school student in Austin.
Intelligent robots can help humans in other ways, too. They can perform repetitive tasks, like processing sensor data, where human boredom may cause mistakes. They can limit human exposure to dangerous materials and dangerous situations, such as when decontaminating a nuclear reactor, working in areas humans can’t go. In general, AI robots can provide humans with more time to pursue whatever they define as happiness by freeing them from having to do other work.
Achieving most of these benefits will require a lot more research and development. Regulations that make it more expensive to develop AIs or prevent certain uses may delay or forestall those efforts. This is particularly true for small businesses and individuals—key drivers of new technologies—who are not as well equipped to deal with regulation compliance as larger companies. In fact, the biggest beneficiary of AI regulation may be large companies that are used to dealing with it, because startups will have a harder time competing in a regulated environment.
The need for innovation
Humanity faced a similar set of issues in the early days of the internet. But the United States actively avoided regulating the internet to avoid stunting its early growth. Musk’s PayPal and numerous other businesses helped build the modern online world while subject only to regular human-scale rules, like those preventing theft and fraud.
Artificial intelligence systems have the potential to change how humans do just about everything. Scientists, engineers, programmers, and entrepreneurs need time to develop the technologies—and deliver their benefits. Their work should be free from concern that some AIs might be banned, and from the delays and costs associated with new AI-specific regulations.
This article was originally published on The Conversation. Read the original article.
Image Credit: Tatiana Shepeleva / Shutterstock.com Continue reading

Posted in Human Robots

#431203 Could We Build a Blade Runner-Style ...

The new Blade Runner sequel will return us to a world where sophisticated androids made with organic body parts can match the strength and emotions of their human creators. As someone who builds biologically inspired robots, I’m interested in whether our own technology will ever come close to matching the “replicants” of Blade Runner 2049.
The reality is that we’re a very long way from building robots with human-like abilities. But advances in so-called soft robotics show a promising way forward for technology that could be a new basis for the androids of the future.
From a scientific point of view, the real challenge is replicating the complexity of the human body. Each one of us is made up of millions and millions of cells, and we have no clue how we can build such a complex machine that is indistinguishable from us humans. The most complex machines today, for example the world’s largest airliner, the Airbus A380, are composed of millions of parts. But in order to match the complexity level of humans, we would need to scale this complexity up about a million times.
There are currently three different ways that engineering is making the border between humans and robots more ambiguous. Unfortunately, these approaches are only starting points and are not yet even close to the world of Blade Runner.
There are human-like robots built from scratch by assembling artificial sensors, motors, and computers to resemble the human body and motion. However, extending the current human-like robot would not bring Blade Runner-style androids closer to humans, because every artificial component, such as sensors and motors, are still hopelessly primitive compared to their biological counterparts.
There is also cyborg technology, where the human body is enhanced with machines such as robotic limbs and wearable and implantable devices. This technology is similarly very far away from matching our own body parts.
Finally, there is the technology of genetic manipulation, where an organism’s genetic code is altered to modify that organism’s body. Although we have been able to identify and manipulate individual genes, we still have a limited understanding of how an entire human emerges from genetic code. As such, we don’t know the degree to which we can actually program code to design everything we wish.
Soft robotics: a way forward?
But we might be able to move robotics closer to the world of Blade Runner by pursuing other technologies and, in particular, by turning to nature for inspiration. The field of soft robotics is a good example. In the last decade or so, robotics researchers have been making considerable efforts to make robots soft, deformable, squishable, and flexible.
This technology is inspired by the fact that 90% of the human body is made from soft substances such as skin, hair, and tissues. This is because most of the fundamental functions in our body rely on soft parts that can change shape, from the heart and lungs pumping fluid around our body to the eye lenses generating signals from their movement. Cells even change shape to trigger division, self-healing and, ultimately, the evolution of the body.
The softness of our bodies is the origin of all their functionality needed to stay alive. So being able to build soft machines would at least bring us a step closer to the robotic world of Blade Runner. Some of the recent technological advances include artificial hearts made out of soft functional materials that are pumping fluid through deformation. Similarly, soft, wearable gloves can help make hand grasping stronger. And “epidermal electronics” has enabled us to tattoo electronic circuits onto our biological skins.
Softness is the keyword that brings humans and technologies closer together. Sensors, motors, and computers are all of a sudden integrated into human bodies once they became soft, and the border between us and external devices becomes ambiguous, just like soft contact lenses became part of our eyes.
Nevertheless, the hardest challenge is how to make individual parts of a soft robot body physically adaptable by self-healing, growing, and differentiating. After all, every part of a living organism is also alive in biological systems in order to make our bodies totally adaptable and evolvable, the function of which could make machines totally indistinguishable from ourselves.
It is impossible to predict when the robotic world of Blade Runner might arrive, and if it does, it will probably be very far in the future. But as long as the desire to build machines indistinguishable from humans is there, the current trends of robotic revolution could make it possible to achieve that dream.
This article was originally published on The Conversation. Read the original article.
Image Credit: Dariush M / Shutterstock.com Continue reading

Posted in Human Robots

#431189 Researchers Develop New Tech to Predict ...

It is one of the top 10 deadliest diseases in the United States, and it cannot be cured or prevented. But new studies are finding ways to diagnose Alzheimer’s disease in its earliest stages, while some of the latest research says technologies like artificial intelligence can detect dementia years before the first symptoms occur.
These advances, in turn, will help bolster clinical trials seeking a cure or therapies to slow or prevent the disease. Catching Alzheimer’s disease or other forms of dementia early in their progression can help ease symptoms in some cases.
“Often neurodegeneration is diagnosed late when massive brain damage has already occurred,” says professor Francis L Martin at the University of Central Lancashire in the UK, in an email to Singularity Hub. “As we know more about the molecular basis of the disease, there is the possibility of clinical interventions that might slow or halt the progress of the disease, i.e., before brain damage. Extending cognitive ability for even a number of years would have huge benefit.”
Blood Diamond
Martin is the principal investigator on a project that has developed a technique to analyze blood samples to diagnose Alzheimer’s disease and distinguish between other forms of dementia.
The researchers used sensor-based technology with a diamond core to analyze about 550 blood samples. They identified specific chemical bonds within the blood after passing light through the diamond core and recording its interaction with the sample. The results were then compared against blood samples from cases of Alzheimer’s disease and other neurodegenerative diseases, along with those from healthy individuals.
“From a small drop of blood, we derive a fingerprint spectrum. That fingerprint spectrum contains numerical data, which can be inputted into a computational algorithm we have developed,” Martin explains. “This algorithm is validated for prediction of unknown samples. From this we determine sensitivity and specificity. Although not perfect, my clinical colleagues reliably tell me our results are far better than anything else they have seen.”
Martin says the breakthrough is the result of more than 10 years developing sensor-based technologies for routine screening, monitoring, or diagnosing neurodegenerative diseases and cancers.
“My vision was to develop something low-cost that could be readily applied in a typical clinical setting to handle thousands of samples potentially per day or per week,” he says, adding that the technology also has applications in environmental science and food security.
The new test can also distinguish accurately between Alzheimer’s disease and other forms of neurodegeneration, such as Lewy body dementia, which is one of the most common causes of dementia after Alzheimer’s.
“To this point, other than at post-mortem, there has been no single approach towards classifying these pathologies,” Martin notes. “MRI scanning is often used but is labor-intensive, costly, difficult to apply to dementia patients, and not a routine point-of-care test.”
Crystal Ball
Canadian researchers at McGill University believe they can predict Alzheimer’s disease up to two years before its onset using big data and artificial intelligence. They developed an algorithm capable of recognizing the signatures of dementia using a single amyloid PET scan of the brain of patients at risk of developing the disease.
Alzheimer’s is caused by the accumulation of two proteins—amyloid beta and tau. The latest research suggests that amyloid beta leads to the buildup of tau, which is responsible for damaging nerve cells and connections between cells called synapses.
The work was recently published in the journal Neurobiology of Aging.
“Despite the availability of biomarkers capable of identifying the proteins causative of Alzheimer’s disease in living individuals, the current technologies cannot predict whether carriers of AD pathology in the brain will progress to dementia,” Sulantha Mathotaarachchi, lead author on the paper and an expert in artificial neural networks, tells Singularity Hub by email.
The algorithm, trained on a population with amnestic mild cognitive impairment observed over 24 months, proved accurate 84.5 percent of the time. Mathotaarachchi says the algorithm can be trained on different populations for different observational periods, meaning the system can grow more comprehensive with more data.
“The more biomarkers we incorporate, the more accurate the prediction could be,” Mathotaarachchi adds. “However, right now, acquiring [the] required amount of training data is the biggest challenge. … In Alzheimer’s disease, it is known that the amyloid protein deposition occurs decades before symptoms onset.”
Unfortunately, the same process occurs in normal aging as well. “The challenge is to identify the abnormal patterns of deposition that lead to the disease later on,” he says
One of the key goals of the project is to improve the research in Alzheimer’s disease by ensuring those patients with the highest probability to develop dementia are enrolled in clinical trials. That will increase the efficiency of clinical programs, according to Mathotaarachchi.
“One of the most important outcomes from our study was the pilot, online, real-time prediction tool,” he says. “This can be used as a framework for patient screening before recruiting for clinical trials. … If a disease-modifying therapy becomes available for patients, a predictive tool might have clinical applications as well, by providing to the physician information regarding clinical progression.”
Pixel by Pixel Prediction
Private industry is also working toward improving science’s predictive powers when it comes to detecting dementia early. One startup called Darmiyan out of San Francisco claims its proprietary software can pick up signals before the onset of Alzheimer’s disease by up to 15 years.
Darmiyan didn’t respond to a request for comment for this article. Venture Beat reported that the company’s MRI-analyzing software “detects cell abnormalities at a microscopic level to reveal what a standard MRI scan cannot” and that the “software measures and highlights subtle microscopic changes in the brain tissue represented in every pixel of the MRI image long before any symptoms arise.”
Darmiyan claims to have a 90 percent accuracy rate and says its software has been vetted by top academic institutions like New York University, Rockefeller University, and Stanford, according to Venture Beat. The startup is awaiting FDA approval to proceed further but is reportedly working with pharmaceutical companies like Amgen, Johnson & Johnson, and Pfizer on pilot programs.
“Our technology enables smarter drug selection in preclinical animal studies, better patient selection for clinical trials, and much better drug-effect monitoring,” Darmiyan cofounder and CEO Padideh Kamali-Zare told Venture Beat.
Conclusions
An estimated 5.5 million Americans have Alzheimer’s, and one in 10 people over age 65 have been diagnosed with the disease. By mid-century, the number of Alzheimer’s patients could rise to 16 million. Health care costs in 2017 alone are estimated to be $259 billion, and by 2050 the annual price tag could be more than $1 trillion.
In sum, it’s a disease that cripples people and the economy.
Researchers are always after more data as they look to improve outcomes, with the hope of one day developing a cure or preventing the onset of neurodegeneration altogether. If interested in seeing this medical research progress, you can help by signing up on the Brain Health Registry to improve the quality of clinical trials.
Image Credit: rudall30 / Shutterstock.com Continue reading

Posted in Human Robots

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots

#430955 This Inspiring Teenager Wants to Save ...

It’s not every day you meet a high school student who’s been building functional robots since age 10. Then again, Mihir Garimella is definitely not your average teenager.
When I sat down to interview him recently at Singularity University’s Global Summit, that much was clear.
Mihir’s curiosity for robotics began at age two when his parents brought home a pet dog—well, a robotic dog. A few years passed with this robotic companion by his side, and Mihir became fascinated with how software and hardware could bring inanimate objects to “life.”
When he was 10, Mihir built a robotic violin tuner called Robo-Mozart to help him address a teacher’s complaints about his always-out-of-tune violin. The robot analyzes the sound of the violin, determines which strings are out of tune, and then uses motors to turn the tuning pegs.
Robo-Mozart and other earlier projects helped Mihir realize he could use robotics to solve real problems. Fast-forward to age 14 and Flybot, a tiny, low-cost emergency response drone that won Mihir top honors in his age category at the 2015 Google Science Fair.

The small drone is propelled by four rotors and is designed to mimic how fruit flies can speedily see and react to surrounding threats. It’s a design idea that hit Mihir when he and his family returned home after a long vacation to discover they had left bananas on their kitchen counter. The house was filled with fruit flies.
After many failed attempts to swat the flies, Mihir started wondering how these tiny creatures with small brains and horrible vision were such masterful escape artists. He began digging through research papers on fruit flies and came to an interesting conclusion.
Since fruit flies can’t see a lot of detail, they compensate by processing visual information very fast—ten times faster than people do.
“That’s what enables them to escape so effectively,” says Mihir.
Escaping a threat for a fruit fly could mean quickly avoiding a fatal swat from a human hand. Applied to a search-and-response drone, the scenario shifts—picture a drone instantaneously detecting and avoiding a falling ceiling while searching for survivors inside a collapsing building.

Now, at 17, Mihir is still pushing Flybot forward. He’s developing software to enable the drone to operate autonomously and hopes it will be able to navigate environments such as a burning building, or a structure that’s been hit by an earthquake. The drone is also equipped with intelligent sensors to collect spatial data it will use to maneuver around obstacles and detect things like a trapped person or the location of a gas leak.
For everyone concerned about robots eating jobs, Flybot is a perfect example of how technology can aid existing jobs.
Flybot could substitute for a first responder entering a dangerous situation or help a firefighter make a quicker rescue by showing where victims are trapped. With its small and fast design, the drone could also presumably carry out an initial search-and-rescue sweep in just a few minutes.
Mihir is committed to commercializing the product and keeping it within a $250–$500 price range, which is a fraction of the cost of many current emergency response drones. He hopes the low cost will allow the technology to be used in developing countries.
Next month, Mihir starts his freshman year at Stanford, where he plans to keep up his research and create a company to continue work on the drone.
When I asked Mihir what fuels him, he said, “Curiosity is a great skill for inventors. It lets you find inspiration in a lot of places that you may not look. If I had started by trying to build an escape algorithm for these drones, I wouldn’t know where to start. But looking at fruit flies and getting inspired by them, it gave me a really good place to look for inspiration.”
It’s a bit mind boggling how much Mihir has accomplished by age 17, but I suspect he’s just getting started.
Image Credit: Google Science Fair via YouTube Continue reading

Posted in Human Robots