Tag Archives: crash
#436190 What Is the Uncanny Valley?
Have you ever encountered a lifelike humanoid robot or a realistic computer-generated face that seem a bit off or unsettling, though you can’t quite explain why?
Take for instance AVA, one of the “digital humans” created by New Zealand tech startup Soul Machines as an on-screen avatar for Autodesk. Watching a lifelike digital being such as AVA can be both fascinating and disconcerting. AVA expresses empathy through her demeanor and movements: slightly raised brows, a tilt of the head, a nod.
By meticulously rendering every lash and line in its avatars, Soul Machines aimed to create a digital human that is virtually undistinguishable from a real one. But to many, rather than looking natural, AVA actually looks creepy. There’s something about it being almost human but not quite that can make people uneasy.
Like AVA, many other ultra-realistic avatars, androids, and animated characters appear stuck in a disturbing in-between world: They are so lifelike and yet they are not “right.” This void of strangeness is known as the uncanny valley.
Uncanny Valley: Definition and History
The uncanny valley is a concept first introduced in the 1970s by Masahiro Mori, then a professor at the Tokyo Institute of Technology. The term describes Mori’s observation that as robots appear more humanlike, they become more appealing—but only up to a certain point. Upon reaching the uncanny valley, our affinity descends into a feeling of strangeness, a sense of unease, and a tendency to be scared or freaked out.
Image: Masahiro Mori
The uncanny valley as depicted in Masahiro Mori’s original graph: As a robot’s human likeness [horizontal axis] increases, our affinity towards the robot [vertical axis] increases too, but only up to a certain point. For some lifelike robots, our response to them plunges, and they appear repulsive or creepy. That’s the uncanny valley.
In his seminal essay for Japanese journal Energy, Mori wrote:
I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley, which I call the uncanny valley.
Later in the essay, Mori describes the uncanny valley by using an example—the first prosthetic hands:
One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and the hand becomes uncanny.
In an interview with IEEE Spectrum, Mori explained how he came up with the idea for the uncanny valley:
“Since I was a child, I have never liked looking at wax figures. They looked somewhat creepy to me. At that time, electronic prosthetic hands were being developed, and they triggered in me the same kind of sensation. These experiences had made me start thinking about robots in general, which led me to write that essay. The uncanny valley was my intuition. It was one of my ideas.”
Uncanny Valley Examples
To better illustrate how the uncanny valley works, here are some examples of the phenomenon. Prepare to be freaked out.
1. Telenoid
Photo: Hiroshi Ishiguro/Osaka University/ATR
Taking the top spot in the “creepiest” rankings of IEEE Spectrum’s Robots Guide, Telenoid is a robotic communication device designed by Japanese roboticist Hiroshi Ishiguro. Its bald head, lifeless face, and lack of limbs make it seem more alien than human.
2. Diego-san
Photo: Andrew Oh/Javier Movellan/Calit2
Engineers and roboticists at the University of California San Diego’s Machine Perception Lab developed this robot baby to help parents better communicate with their infants. At 1.2 meters (4 feet) tall and weighing 30 kilograms (66 pounds), Diego-san is a big baby—bigger than an average 1-year-old child.
“Even though the facial expression is sophisticated and intuitive in this infant robot, I still perceive a false smile when I’m expecting the baby to appear happy,” says Angela Tinwell, a senior lecturer at the University of Bolton in the U.K. and author of The Uncanny Valley in Games and Animation. “This, along with a lack of detail in the eyes and forehead, can make the baby appear vacant and creepy, so I would want to avoid those ‘dead eyes’ rather than interacting with Diego-san.”
3. Geminoid HI
Photo: Osaka University/ATR/Kokoro
Another one of Ishiguro’s creations, Geminoid HI is his android replica. He even took hair from his own scalp to put onto his robot twin. Ishiguro says he created Geminoid HI to better understand what it means to be human.
4. Sophia
Photo: Mikhail Tereshchenko/TASS/Getty Images
Designed by David Hanson of Hanson Robotics, Sophia is one of the most famous humanoid robots. Like Soul Machines’ AVA, Sophia displays a range of emotional expressions and is equipped with natural language processing capabilities.
5. Anthropomorphized felines
The uncanny valley doesn’t only happen with robots that adopt a human form. The 2019 live-action versions of the animated film The Lion King and the musical Cats brought the uncanny valley to the forefront of pop culture. To some fans, the photorealistic computer animations of talking lions and singing cats that mimic human movements were just creepy.
Are you feeling that eerie sensation yet?
Uncanny Valley: Science or Pseudoscience?
Despite our continued fascination with the uncanny valley, its validity as a scientific concept is highly debated. The uncanny valley wasn’t actually proposed as a scientific concept, yet has often been criticized in that light.
Mori himself said in his IEEE Spectrum interview that he didn’t explore the concept from a rigorous scientific perspective but as more of a guideline for robot designers:
Pointing out the existence of the uncanny valley was more of a piece of advice from me to people who design robots rather than a scientific statement.
Karl MacDorman, an associate professor of human-computer interaction at Indiana University who has long studied the uncanny valley, interprets the classic graph not as expressing Mori’s theory but as a heuristic for learning the concept and organizing observations.
“I believe his theory is instead expressed by his examples, which show that a mismatch in the human likeness of appearance and touch or appearance and motion can elicit a feeling of eeriness,” MacDorman says. “In my own experiments, I have consistently reproduced this effect within and across sense modalities. For example, a mismatch in the human realism of the features of a face heightens eeriness; a robot with a human voice or a human with a robotic voice is eerie.”
How to Avoid the Uncanny Valley
Unless you intend to create creepy characters or evoke a feeling of unease, you can follow certain design principles to avoid the uncanny valley. “The effect can be reduced by not creating robots or computer-animated characters that combine features on different sides of a boundary—for example, human and nonhuman, living and nonliving, or real and artificial,” MacDorman says.
To make a robot or avatar more realistic and move it beyond the valley, Tinwell says to ensure that a character’s facial expressions match its emotive tones of speech, and that its body movements are responsive and reflect its hypothetical emotional state. Special attention must also be paid to facial elements such as the forehead, eyes, and mouth, which depict the complexities of emotion and thought. “The mouth must be modeled and animated correctly so the character doesn’t appear aggressive or portray a ‘false smile’ when they should be genuinely happy,” she says.
For Christoph Bartneck, an associate professor at the University of Canterbury in New Zealand, the goal is not to avoid the uncanny valley, but to avoid bad character animations or behaviors, stressing the importance of matching the appearance of a robot with its ability. “We’re trained to spot even the slightest divergence from ‘normal’ human movements or behavior,” he says. “Hence, we often fail in creating highly realistic, humanlike characters.”
But he warns that the uncanny valley appears to be more of an uncanny cliff. “We find the likability to increase and then crash once robots become humanlike,” he says. “But we have never observed them ever coming out of the valley. You fall off and that’s it.” Continue reading
#434260 The Most Surprising Tech Breakthroughs ...
Development across the entire information technology landscape certainly didn’t slow down this year. From CRISPR babies, to the rapid decline of the crypto markets, to a new robot on Mars, and discovery of subatomic particles that could change modern physics as we know it, there was no shortage of headline-grabbing breakthroughs and discoveries.
As 2018 comes to a close, we can pause and reflect on some of the biggest technology breakthroughs and scientific discoveries that occurred this year.
I reached out to a few Singularity University speakers and faculty across the various technology domains we cover asking what they thought the biggest breakthrough was in their area of expertise. The question posed was:
“What, in your opinion, was the biggest development in your area of focus this year? Or, what was the breakthrough you were most surprised by in 2018?”
I can share that for me, hands down, the most surprising development I came across in 2018 was learning that a publicly-traded company that was briefly valued at over $1 billion, and has over 12,000 employees and contractors spread around the world, has no physical office space and the entire business is run and operated from inside an online virtual world. This is Ready Player One stuff happening now.
For the rest, here’s what our experts had to say.
DIGITAL BIOLOGY
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University
“That’s easy: CRISPR babies. I knew it was technically possible, and I’ve spent two years predicting it would happen first in China. I knew it was just a matter of time but I failed to predict the lack of oversight, the dubious consent process, the paucity of publicly-available data, and the targeting of a disease that we already know how to prevent and treat and that the children were at low risk of anyway.
I’m not convinced that this counts as a technical breakthrough, since one of the girls probably isn’t immune to HIV, but it sure was a surprise.”
For more, read Dr. Vora’s summary of this recent stunning news from China regarding CRISPR-editing human embryos.
QUANTUM COMPUTING
Andrew Fursman | Co-Founder/CEO 1Qbit, Faculty, Quantum Computing, Singularity University
“There were two last-minute holiday season surprise quantum computing funding and technology breakthroughs:
First, right before the government shutdown, one priority legislative accomplishment will provide $1.2 billion in quantum computing research over the next five years. Second, there’s the rise of ions as a truly viable, scalable quantum computing architecture.”
*Read this Gizmodo profile on an exciting startup in the space to learn more about this type of quantum computing
ENERGY
Ramez Naam | Chair, Energy and Environmental Systems, Singularity University
“2018 had plenty of energy surprises. In solar, we saw unsubsidized prices in the sunny parts of the world at just over two cents per kwh, or less than half the price of new coal or gas electricity. In the US southwest and Texas, new solar is also now cheaper than new coal or gas. But even more shockingly, in Germany, which is one of the least sunny countries on earth (it gets less sunlight than Canada) the average bid for new solar in a 2018 auction was less than 5 US cents per kwh. That’s as cheap as new natural gas in the US, and far cheaper than coal, gas, or any other new electricity source in most of Europe.
In fact, it’s now cheaper in some parts of the world to build new solar or wind than to run existing coal plants. Think tank Carbon Tracker calculates that, over the next 10 years, it will become cheaper to build new wind or solar than to operate coal power in most of the world, including specifically the US, most of Europe, and—most importantly—India and the world’s dominant burner of coal, China.
Here comes the sun.”
GLOBAL GRAND CHALLENGES
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University
“In 2018 we saw a lot of areas in the Global Grand Challenges move forward—advancements in robotic farming technology and cultured meat, low-cost 3D printed housing, more sophisticated types of online education expanding to every corner of the world, and governments creating new policies to deal with the ethics of the digital world. These were the areas we were watching and had predicted there would be change.
What most surprised me was to see young people, especially teenagers, start to harness technology in powerful ways and use it as a platform to make their voices heard and drive meaningful change in the world. In 2018 we saw teenagers speak out on a number of issues related to their well-being and launch digital movements around issues such as gun and school safety, global warming and environmental issues. We often talk about the harm technology can cause to young people, but on the flip side, it can be a very powerful tool for youth to start changing the world today and something I hope we see more of in the future.”
BUSINESS STRATEGY
Pascal Finette | Chair, Entrepreneurship and Open Innovation, Singularity University
“Without a doubt the rapid and massive adoption of AI, specifically deep learning, across industries, sectors, and organizations. What was a curiosity for most companies at the beginning of the year has quickly made its way into the boardroom and leadership meetings, and all the way down into the innovation and IT department’s agenda. You are hard-pressed to find a mid- to large-sized company today that is not experimenting or implementing AI in various aspects of its business.
On the slightly snarkier side of answering this question: The very rapid decline in interest in blockchain (and cryptocurrencies). The blockchain party was short, ferocious, and ended earlier than most would have anticipated, with a huge hangover for some. The good news—with the hot air dissipated, we can now focus on exploring the unique use cases where blockchain does indeed offer real advantages over centralized approaches.”
*Author note: snark is welcome and appreciated
ROBOTICS
Hod Lipson | Director, Creative Machines Lab, Columbia University
“The biggest surprise for me this year in robotics was learning dexterity. For decades, roboticists have been trying to understand and imitate dexterous manipulation. We humans seem to be able to manipulate objects with our fingers with incredible ease—imagine sifting through a bunch of keys in the dark, or tossing and catching a cube. And while there has been much progress in machine perception, dexterous manipulation remained elusive.
There seemed to be something almost magical in how we humans can physically manipulate the physical world around us. Decades of research in grasping and manipulation, and millions of dollars spent on robot-hand hardware development, has brought us little progress. But in late 2018, the Berkley OpenAI group demonstrated that this hurdle may finally succumb to machine learning as well. Given 200 years worth of practice, machines learned to manipulate a physical object with amazing fluidity. This might be the beginning of a new age for dexterous robotics.”
MACHINE LEARNING
Jeremy Howard | Founding Researcher, fast.ai, Founder/CEO, Enlitic, Faculty Data Science, Singularity University
“The biggest development in machine learning this year has been the development of effective natural language processing (NLP).
The New York Times published an article last month titled “Finally, a Machine That Can Finish Your Sentence,” which argued that NLP neural networks have reached a significant milestone in capability and speed of development. The “finishing your sentence” capability mentioned in the title refers to a type of neural network called a “language model,” which is literally a model that learns how to finish your sentences.
Earlier this year, two systems (one, called ELMO, is from the Allen Institute for AI, and the other, called ULMFiT, was developed by me and Sebastian Ruder) showed that such a model could be fine-tuned to dramatically improve the state-of-the-art in nearly every NLP task that researchers study. This work was further developed by OpenAI, which in turn was greatly scaled up by Google Brain, who created a system called BERT which reached human-level performance on some of NLP’s toughest challenges.
Over the next year, expect to see fine-tuned language models used for everything from understanding medical texts to building disruptive social media troll armies.”
DIGITAL MANUFACTURING
Andre Wegner | Founder/CEO Authentise, Chair, Digital Manufacturing, Singularity University
“Most surprising to me was the extent and speed at which the industry finally opened up.
While previously, only few 3D printing suppliers had APIs and knew what to do with them, 2018 saw nearly every OEM (or original equipment manufacturer) enabling data access and, even more surprisingly, shying away from proprietary standards and adopting MTConnect, as stalwarts such as 3D Systems and Stratasys have been. This means that in two to three years, data access to machines will be easy, commonplace, and free. The value will be in what is being done with that data.
Another example of this openness are the seemingly endless announcements of integrated workflows: GE’s announcement with most major software players to enable integrated solutions, EOS’s announcement with Siemens, and many more. It’s clear that all actors in the additive ecosystem have taken a step forward in terms of openness. The result is a faster pace of innovation, particularly in the software and data domains that are crucial to enabling comprehensive digital workflow to drive agile and resilient manufacturing.
I’m more optimistic we’ll achieve that now than I was at the end of 2017.”
SCIENCE AND DISCOVERY
Paul Saffo | Chair, Future Studies, Singularity University, Distinguished Visiting Scholar, Stanford Media-X Research Network
“The most important development in technology this year isn’t a technology, but rather the astonishing science surprises made possible by recent technology innovations. My short list includes the discovery of the “neptmoon”, a Neptune-scale moon circling a Jupiter-scale planet 8,000 lightyears from us; the successful deployment of the Mars InSight Lander a month ago; and the tantalizing ANITA detection (what could be a new subatomic particle which would in turn blow the standard model wide open). The highest use of invention is to support science discovery, because those discoveries in turn lead us to the future innovations that will improve the state of the world—and fire up our imaginations.”
ROBOTICS
Pablos Holman | Inventor, Hacker, Faculty, Singularity University
“Just five or ten years ago, if you’d asked any of us technologists “What is harder for robots? Eyes, or fingers?” We’d have all said eyes. Robots have extraordinary eyes now, but even in a surgical robot, the fingers are numb and don’t feel anything. Stanford robotics researchers have invented fingertips that can feel, and this will be a kingpin that allows robots to go everywhere they haven’t been yet.”
BLOCKCHAIN
Nathana Sharma | Blockchain, Policy, Law, and Ethics, Faculty, Singularity University
“2017 was the year of peak blockchain hype. 2018 has been a year of resetting expectations and technological development, even as the broader cryptocurrency markets have faced a winter. It’s now about seeing adoption and applications that people want and need to use rise. An incredible piece of news from December 2018 is that Facebook is developing a cryptocurrency for users to make payments through Whatsapp. That’s surprisingly fast mainstream adoption of this new technology, and indicates how powerful it is.”
ARTIFICIAL INTELLIGENCE
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University
“I think one of the most visible improvements in AI was illustrated by the Boston Dynamics Parkour video. This was not due to an improvement in brushless motors, accelerometers, or gears. It was due to improvements in AI algorithms and training data. To be fair, the video released was cherry-picked from numerous attempts, many of which ended with a crash. However, the fact that it could be accomplished at all in 2018 was a real win for both AI and robotics.”
NEUROSCIENCE
Divya Chander | Chair, Neuroscience, Singularity University
“2018 ushered in a new era of exponential trends in non-invasive brain modulation. Changing behavior or restoring function takes on a new meaning when invasive interfaces are no longer needed to manipulate neural circuitry. The end of 2018 saw two amazing announcements: the ability to grow neural organoids (mini-brains) in a dish from neural stem cells that started expressing electrical activity, mimicking the brain function of premature babies, and the first (known) application of CRISPR to genetically alter two fetuses grown through IVF. Although this was ostensibly to provide genetic resilience against HIV infections, imagine what would happen if we started tinkering with neural circuitry and intelligence.”
Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading
#433807 The How, Why, and Whether of Custom ...
A digital afterlife may soon be within reach, but it might not be for your benefit.
The reams of data we’re creating could soon make it possible to create digital avatars that live on after we die, aimed at comforting our loved ones or sharing our experience with future generations.
That may seem like a disappointing downgrade from the vision promised by the more optimistic futurists, where we upload our consciousness to the cloud and live forever in machines. But it might be a realistic possibility in the not-too-distant future—and the first steps have already been taken.
After her friend died in a car crash, Eugenia Kuyda, co-founder of Russian AI startup Luka, trained a neural network-powered chatbot on their shared message history to mimic him. Journalist and amateur coder James Vlahos took a more involved approach, carrying out extensive interviews with his terminally ill father so that he could create a digital clone of him when he died.
For those of us without the time or expertise to build our own artificial intelligence-powered avatar, startup Eternime is offering to take your social media posts and interactions as well as basic personal information to build a copy of you that could then interact with relatives once you’re gone. The service is so far only running a private beta with a handful of people, but with 40,000 on its waiting list, it’s clear there’s a market.
Comforting—Or Creepy?
The whole idea may seem eerily similar to the Black Mirror episode Be Right Back, in which a woman pays a company to create a digital copy of her deceased husband and eventually a realistic robot replica. And given the show’s focus on the emotional turmoil she goes through, people might question whether the idea is a sensible one.
But it’s hard to say at this stage whether being able to interact with an approximation of a deceased loved one would be a help or a hindrance in the grieving process. The fear is that it could make it harder for people to “let go” or “move on,” but others think it could play a useful therapeutic role, reminding people that just because someone is dead it doesn’t mean they’re gone, and providing a novel way for them to express and come to terms with their feelings.
While at present most envisage these digital resurrections as a way to memorialize loved ones, there are also more ambitious plans to use the technology as a way to preserve expertise and experience. A project at MIT called Augmented Eternity is investigating whether we could use AI to trawl through someone’s digital footprints and extract both their knowledge and elements of their personality.
Project leader Hossein Rahnama says he’s already working with a CEO who wants to leave behind a digital avatar that future executives could consult with after he’s gone. And you wouldn’t necessarily have to wait until you’re dead—experts could create virtual clones of themselves that could dispense advice on demand to far more people. These clones could soon be more than simple chatbots, too. Hollywood has already started spending millions of dollars to create 3D scans of its most bankable stars so that they can keep acting beyond the grave.
It’s easy to see the appeal of the idea; imagine if we could bring back Stephen Hawking or Tim Cook to share their wisdom with us. And what if we could create a digital brain trust combining the experience and wisdom of all the world’s greatest thinkers, accessible on demand?
But there are still huge hurdles ahead before we could create truly accurate representations of people by simply trawling through their digital remains. The first problem is data. Most peoples’ digital footprints only started reaching significant proportions in the last decade or so, and cover a relatively small period of their lives. It could take many years before there’s enough data to create more than just a superficial imitation of someone.
And that’s assuming that the data we produce is truly representative of who we are. Carefully-crafted Instagram profiles and cautiously-worded work emails hardly capture the messy realities of most peoples’ lives.
Perhaps if the idea is simply to create a bank of someone’s knowledge and expertise, accurately capturing the essence of their character would be less important. But these clones would also be static. Real people continually learn and change, but a digital avatar is a snapshot of someone’s character and opinions at the point they died. An inability to adapt as the world around them changes could put a shelf life on the usefulness of these replicas.
Who’s Calling the (Digital) Shots?
It won’t stop people trying, though, and that raises a potentially more important question: Who gets to make the calls about our digital afterlife? The subjects, their families, or the companies that hold their data?
In most countries, the law is currently pretty hazy on this topic. Companies like Google and Facebook have processes to let you choose who should take control of your accounts in the event of your death. But if you’ve forgotten to do that, the fate of your virtual remains comes down to a tangle of federal law, local law, and tech company terms of service.
This lack of regulation could create incentives and opportunities for unscrupulous behavior. The voice of a deceased loved one could be a highly persuasive tool for exploitation, and digital replicas of respected experts could be powerful means of pushing a hidden agenda.
That means there’s a pressing need for clear and unambiguous rules. Researchers at Oxford University recently suggested ethical guidelines that would treat our digital remains the same way museums and archaeologists are required to treat mortal remains—with dignity and in the interest of society.
Whether those kinds of guidelines are ever enshrined in law remains to be seen, but ultimately they may decide whether the digital afterlife turns out to be heaven or hell.
Image Credit: frankie’s / Shutterstock.com Continue reading
#433696 3 Big Ways Tech Is Disrupting Global ...
Disruptive business models are often powered by alternative financing. In Part 1 of this series, I discussed how mobile is redefining money and banking and shared some of the dramatic transformations in the global remittance infrastructure.
In this article, we’ll discuss:
Peer-to-peer lending
AI financial advisors and robo traders
Seamless Transactions
Let’s dive right back in…
Decentralized Lending = Democratized Access to Finances
Peer-to-peer (P2P) lending is an age-old practice, traditionally with high risk and extreme locality. Now, the P2P funding model is being digitized and delocalized, bringing lending online and across borders.
Zopa, the first official crowdlending platform, arrived in the United Kingdom in 2004. Since then, the consumer crowdlending platform has facilitated lending of over 3 billion euros ($3.5 billion USD) of loans.
Person-to-business crowdlending took off, again in the U.K., in 2005 with Funding Circle, now with over 5 billion euros (~5.8 billion USD) of capital loaned to small businesses around the world.
Crowdlending next took off in the US in 2006, with platforms like Prosper and Lending Club. The US crowdlending industry has boomed to $21 billion in loans, across 515,000 loans.
Let’s take a step back… to a time before banks, when lending took place between trusted neighbors in small villages across the globe. Lending started as peer-to-peer transactions.
As villages turned into towns, towns turned into cities, and cities turned into sprawling metropolises, neighborly trust and the ability to communicate across urban landscapes broke down. That’s where banks and other financial institutions came into play—to add trust back into the lending equation.
With crowdlending, we are evidently returning to this pre-centralized-banking model of loans, and moving away from cumbersome intermediaries (e.g. high fees, regulations, and extra complexity).
Fueled by the permeation of the internet, P2P lending took on a new form as ‘crowdlending’ in the early 2000s. Now, as blockchain and artificial intelligence arrive on the digital scene, P2P lending platforms are being overhauled with transparency, accountability, reliability, and immutability.
Artificial Intelligence Micro Lending & Credit Scores
We are beginning to augment our quantitative decision-making with neural networks processing borrowers’ financial data to determine their financial ‘fate’ (or, as some call it, your credit score). Companies like Smart Finance Group (backed by Kai Fu Lee and Sinovation Ventures) are using artificial intelligence to minimize default rates for tens of millions of microloans.
Smart Finance is fueled by users’ personal data, particularly smartphone data and usage behavior. Users are required to give Smart Finance access to their smartphone data, so that Smart Finance’s artificial intelligence engine can generate a credit score from the personal information.
The benefits of this AI-powered lending platform do not stop at increased loan payback rates; there’s a massive speed increase as well. Smart Finance loans are frequently approved in under eight seconds. As we’ve seen with other artificial intelligence disruptions, data is the new gold.
Digitizing access to P2P loans paves the way for billions of people currently without access to banking to leapfrog the centralized banking system, just as Africa bypassed landline phones and went straight to mobile. Leapfrogging centralized banking and the credit system is exactly what Smart Finance has done for hundreds of millions of people in China.
Blockchain-Backed Crowdlending
As artificial intelligence accesses even the most mundane mobile browsing data to assign credit scores, blockchain technologies, particularly immutable ledgers and smart contracts, are massive disruptors to the archaic banking system, building additional trust and transparency on top of current P2P lending models.
Immutable ledgers provide the necessary transparency for accurate credit and loan defaulting history. Smart contracts executed on these immutable ledgers bring the critical ability to digitally replace cumbersome, expensive third parties (like banks), allowing individual borrowers or businesses to directly connect with willing lenders.
Two of the leading blockchain platforms for P2P lending are ETHLend and SALT Lending.
ETHLend is an Ethereum-based decentralized application aiming to bring transparency and trust to P2P lending through Ethereum network smart contracts.
Secure Automated Lending Technology (SALT) allows cryptocurrency asset holders to use their digital assets as collateral for cash loans, without the need to liquidate their holdings, giving rise to a digital-asset-backed lending market.
While blockchain poses a threat to many of the large, centralized banking institutions, some are taking advantage of the new technology to optimize their internal lending, credit scoring, and collateral operations.
In March 2018, ING and Credit Suisse successfully exchanged 25 million euros using HQLA-X, a blockchain-based collateral lending platform.
HQLA-X runs on the R3 Corda blockchain, a platform designed specifically to help heritage financial and commerce institutions migrate away from their inefficient legacy financial infrastructure.
Blockchain and tokenization are going through their own fintech and regulation shakeup right now. In a future blog, I’ll discuss the various efforts to more readily assure smart contracts, and the disruptive business model of security tokens and the US Securities and Exchange Commission.
Parallels to the Global Abundance of Capital
The abundance of capital being created by the advent of P2P loans closely relates to the unprecedented global abundance of capital.
Initial coin offerings (ICOs) and crowdfunding are taking a strong stand in disrupting the $164 billion venture capital market. The total amount invested in ICOs has risen from $6.6 billion in 2017 to $7.15 billion USD in the first half of 2018. Crowdfunding helped projects raise more than $34 billion in 2017, with experts projecting that global crowdfunding investments will reach $300 billion by 2025.
In the last year alone, using ICOs, over a dozen projects have raised hundreds of millions of dollars in mere hours. Take Filecoin, for example, which raised $257 million in only 30 days; its first $135 million was raised in the first hour. Similarly, the Dragon Coin project (which itself is revolutionizing remittance in high-stakes casinos around the world) raised $320 million in its 30-day public ICO.
Some Important Takeaways…
Technology-backed fundraising and financial services are disrupting the world’s largest financial institutions. Anyone, anywhere, at anytime will be able to access the capital they need to pursue their idea.
The speed at which we can go from “I’ve got an idea” to “I run a billion-dollar company” is moving faster than ever.
Following Ray Kurzweil’s Law of Accelerating Returns, the rapid decrease in time to access capital is intimately linked (and greatly dependent on) a financial infrastructure (technology, institutions, platforms, and policies) that can adapt and evolve just as rapidly.
This new abundance of capital requires financial decision-making with ever-higher market prediction precision. That’s exactly where artificial intelligence is already playing a massive role.
Artificial Intelligence, Robo Traders, and Financial Advisors
On May 6, 2010, the Dow Jones Industrial Average suddenly collapsed by 998.5 points (equal to 8 percent, or $1 trillion). The crash lasted over 35 minutes and is now known as the ‘Flash Crash’. While no one knows the specific reason for this 2010 stock market anomaly, experts widely agree that the Flash Crash had to do with algorithmic trading.
With the ability to have instant, trillion-dollar market impacts, algorithmic trading and artificial intelligence are undoubtedly ingrained in how financial markets operate.
In 2017, CNBC.com estimated that 90 percent of daily trading volume in stock trading is done by machine algorithms, and only 10 percent is carried out directly by humans.
Artificial intelligence and financial management algorithms are not only available to top Wall Street players.
Robo-advisor financial management apps, like Wealthfront and Betterment, are rapidly permeating the global market. Wealthfront currently has $9.5 billion in assets under management, and Betterment has $10 billion.
Artificial intelligent financial agents are already helping financial institutions protect your money and fight fraud. A prime application for machine learning is in detecting anomalies in your spending and transaction habits, and flagging potentially fraudulent transactions.
As artificial intelligence continues to exponentially increase in power and capabilities, increasingly powerful trading and financial management bots will come online, finding massive new and previously lost streams of wealth.
How else are artificial intelligence and automation transforming finance?
Disruptive Remittance and Seamless Transactions
When was the last time you paid in cash at a toll booth? How about for a taxi ride?
EZ-Pass, the electronic tolling company implemented extensively on the East Coast, has done wonders to reduce traffic congestion and increase traffic flow.
Driving down I-95 on the East Coast of the United States, drivers rarely notice their financial transaction with the state’s tolling agencies. The transactions are seamless.
The Uber app enables me to travel without my wallet. I can forget about payment on my trip, free up my mental bandwidth and time for higher-priority tasks. The entire process is digitized and, by extension, automated and integrated into Uber’s platform (Note: This incredible convenience many times causes me to accidentally walk out of taxi cabs without paying!).
In January 2018, we saw the success of the first cutting-edge, AI-powered Amazon Go store open in Seattle, Washington. The store marked a new era in remittance and transactions. Gone are the days of carrying credit cards and cash, and gone are the cash registers. And now, on the heals of these early ‘beta-tests’, Amazon is considering opening as many as 3,000 of these cashierless stores by 2023.
Amazon Go stores use AI algorithms that watch various video feeds (from advanced cameras) throughout the store to identify who picks up groceries, exactly what products they select, and how much to charge that person when they walk out of the store. It’s a grab and go experience.
Let’s extrapolate the notion of seamless, integrated payment systems from Amazon Go and Uber’s removal of post-ride payment to the rest of our day-to-day experience.
Imagine this near future:
As you near the front door of your home, your AI assistant summons a self-driving Uber that takes you to the Hyperloop station (after all, you work in L.A. but live in San Francisco).
At the station, you board your pod, without noticing that your ticket purchase was settled via a wireless payment checkpoint.
After work, you stop at the Amazon Go and pick up dinner. Your virtual AI assistant passes your Amazon account information to the store’s payment checkpoint, as the store’s cameras and sensors track you, your cart and charge you auto-magically.
At home, unbeknownst to you, your AI has already restocked your fridge and pantry with whatever items you failed to pick up at the Amazon Go.
Once we remove the actively transacting aspect of finance, what else becomes possible?
Top Conclusions
Extraordinary transformations are happening in the finance world. We’ve only scratched the surface of the fintech revolution. All of these transformative financial technologies require high-fidelity assurance, robust insurance, and a mechanism for storing value.
I’ll dive into each of these other facets of financial services in future articles.
For now, thanks to coming global communication networks being deployed on 5G, Alphabet’s LUNE, SpaceX’s Starlink and OneWeb, by 2024, nearly all 8 billion people on Earth will be online.
Once connected, these new minds, entrepreneurs, and customers need access to money and financial services to meaningfully participate in the world economy.
By connecting lenders and borrowers around the globe, decentralized lending drives down global interest rates, increases global financial market participation, and enables economic opportunity to the billions of people who are about to come online.
We’re living in the most abundant time in human history, and fintech is just getting started.
Join Me
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Novikov Aleksey / Shutterstock.com Continue reading