Tag Archives: control

#432051 What Roboticists Are Learning From Early ...

You might not have heard of Hanson Robotics, but if you’re reading this, you’ve probably seen their work. They were the company behind Sophia, the lifelike humanoid avatar that’s made dozens of high-profile media appearances. Before that, they were the company behind that strange-looking robot that seemed a bit like Asimo with Albert Einstein’s head—or maybe you saw BINA48, who was interviewed for the New York Times in 2010 and featured in Jon Ronson’s books. For the sci-fi aficionados amongst you, they even made a replica of legendary author Philip K. Dick, best remembered for having books with titles like Do Androids Dream of Electric Sheep? turned into films with titles like Blade Runner.

Hanson Robotics, in other words, with their proprietary brand of life-like humanoid robots, have been playing the same game for a while. Sometimes it can be a frustrating game to watch. Anyone who gives the robot the slightest bit of thought will realize that this is essentially a chat-bot, with all the limitations this implies. Indeed, even in that New York Times interview with BINA48, author Amy Harmon describes it as a frustrating experience—with “rare (but invariably thrilling) moments of coherence.” This sensation will be familiar to anyone who’s conversed with a chatbot that has a few clever responses.

The glossy surface belies the lack of real intelligence underneath; it seems, at first glance, like a much more advanced machine than it is. Peeling back that surface layer—at least for a Hanson robot—means you’re peeling back Frubber. This proprietary substance—short for “Flesh Rubber,” which is slightly nightmarish—is surprisingly complicated. Up to thirty motors are required just to control the face; they manipulate liquid cells in order to make the skin soft, malleable, and capable of a range of different emotional expressions.

A quick combinatorial glance at the 30+ motors suggests that there are millions of possible combinations; researchers identify 62 that they consider “human-like” in Sophia, although not everyone agrees with this assessment. Arguably, the technical expertise that went into reconstructing the range of human facial expressions far exceeds the more simplistic chat engine the robots use, although it’s the second one that allows it to inflate the punters’ expectations with a few pre-programmed questions in an interview.

Hanson Robotics’ belief is that, ultimately, a lot of how humans will eventually relate to robots is going to depend on their faces and voices, as well as on what they’re saying. “The perception of identity is so intimately bound up with the perception of the human form,” says David Hanson, company founder.

Yet anyone attempting to design a robot that won’t terrify people has to contend with the uncanny valley—that strange blend of concern and revulsion people react with when things appear to be creepily human. Between cartoonish humanoids and genuine humans lies what has often been a no-go zone in robotic aesthetics.

The uncanny valley concept originated with roboticist Masahiro Mori, who argued that roboticists should avoid trying to replicate humans exactly. Since anything that wasn’t perfect, but merely very good, would elicit an eerie feeling in humans, shirking the challenge entirely was the only way to avoid the uncanny valley. It’s probably a task made more difficult by endless streams of articles about AI taking over the world that inexplicably conflate AI with killer humanoid Terminators—which aren’t particularly likely to exist (although maybe it’s best not to push robots around too much).

The idea behind this realm of psychological horror is fairly simple, cognitively speaking.

We know how to categorize things that are unambiguously human or non-human. This is true even if they’re designed to interact with us. Consider the popularity of Aibo, Jibo, or even some robots that don’t try to resemble humans. Something that resembles a human, but isn’t quite right, is bound to evoke a fear response in the same way slightly distorted music or slightly rearranged furniture in your home will. The creature simply doesn’t fit.

You may well reject the idea of the uncanny valley entirely. David Hanson, naturally, is not a fan. In the paper Upending the Uncanny Valley, he argues that great art forms have often resembled humans, but the ultimate goal for humanoid roboticists is probably to create robots we can relate to as something closer to humans than works of art.

Meanwhile, Hanson and other scientists produce competing experiments to either demonstrate that the uncanny valley is overhyped, or to confirm it exists and probe its edges.

The classic experiment involves gradually morphing a cartoon face into a human face, via some robotic-seeming intermediaries—yet it’s in movement that the real horror of the almost-human often lies. Hanson has argued that incorporating cartoonish features may help—and, sometimes, that the uncanny valley is a generational thing which will melt away when new generations grow used to the quirks of robots. Although Hanson might dispute the severity of this effect, it’s clearly what he’s trying to avoid with each new iteration.

Hiroshi Ishiguro is the latest of the roboticists to have dived headlong into the valley.

Building on the work of pioneers like Hanson, those who study human-robot interaction are pushing at the boundaries of robotics—but also of social science. It’s usually difficult to simulate what you don’t understand, and there’s still an awful lot we don’t understand about how we interpret the constant streams of non-verbal information that flow when you interact with people in the flesh.

Ishiguro took this imitation of human forms to extreme levels. Not only did he monitor and log the physical movements people made on videotapes, but some of his robots are based on replicas of people; the Repliee series began with a ‘replicant’ of his daughter. This involved making a rubber replica—a silicone cast—of her entire body. Future experiments were focused on creating Geminoid, a replica of Ishiguro himself.

As Ishiguro aged, he realized that it would be more effective to resemble his replica through cosmetic surgery rather than by continually creating new casts of his face, each with more lines than the last. “I decided not to get old anymore,” Ishiguro said.

We love to throw around abstract concepts and ideas: humans being replaced by machines, cared for by machines, getting intimate with machines, or even merging themselves with machines. You can take an idea like that, hold it in your hand, and examine it—dispassionately, if not without interest. But there’s a gulf between thinking about it and living in a world where human-robot interaction is not a field of academic research, but a day-to-day reality.

As the scientists studying human-robot interaction develop their robots, their replicas, and their experiments, they are making some of the first forays into that world. We might all be living there someday. Understanding ourselves—decrypting the origins of empathy and love—may be the greatest challenge to face. That is, if you want to avoid the valley.

Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading

Posted in Human Robots

#432036 The Power to Upgrade Our Own Biology Is ...

Upgrading our biology may sound like science fiction, but attempts to improve humanity actually date back thousands of years. Every day, we enhance ourselves through seemingly mundane activities such as exercising, meditating, or consuming performance-enhancing drugs, such as caffeine or adderall. However, the tools with which we upgrade our biology are improving at an accelerating rate and becoming increasingly invasive.

In recent decades, we have developed a wide array of powerful methods, such as genetic engineering and brain-machine interfaces, that are redefining our humanity. In the short run, such enhancement technologies have medical applications and may be used to treat many diseases and disabilities. Additionally, in the coming decades, they could allow us to boost our physical abilities or even digitize human consciousness.

What’s New?
Many futurists argue that our devices, such as our smartphones, are already an extension of our cortex and in many ways an abstract form of enhancement. According to philosophers Andy Clark and David Chalmers’ theory of extended mind, we use technology to expand the boundaries of the human mind beyond our skulls.

One can argue that having access to a smartphone enhances one’s cognitive capacities and abilities and is an indirect form of enhancement of its own. It can be considered an abstract form of brain-machine interface. Beyond that, wearable devices and computers are already accessible in the market, and people like athletes use them to boost their progress.

However, these interfaces are becoming less abstract.

Not long ago, Elon Musk announced a new company, Neuralink, with the goal of merging the human mind with AI. The past few years have seen remarkable developments in both the hardware and software of brain-machine interfaces. Experts are designing more intricate electrodes while programming better algorithms to interpret neural signals. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing brains to communicate with one another purely through brainwaves.

Ethical Challenges of Enhancement
There are many social and ethical implications of such advancements.

One of the most fundamental issues with cognitive and physical enhancement techniques is that they contradict the very definition of merit and success that society has relied on for millennia. Many forms of performance-enhancing drugs have been considered “cheating” for the longest time.

But perhaps we ought to revisit some of our fundamental assumptions as a society.

For example, we like to credit hard work and talent in a fair manner, where “fair” generally implies that an individual has acted in a way that has served him to merit his rewards. If you are talented and successful, it is considered to be because you chose to work hard and take advantage of the opportunities available to you. But by these standards, how much of our accomplishments can we truly be credited for?

For instance, the genetic lottery can have an enormous impact on an individual’s predisposition and personality, which can in turn affect factors such as motivation, reasoning skills, and other mental abilities. Many people are born with a natural ability or a physique that gives them an advantage in a particular area or predisposes them to learn faster. But is it justified to reward someone for excellence if their genes had a pivotal role in their path to success?

Beyond that, there are already many ways in which we take “shortcuts” to better mental performance. Seemingly mundane activities like drinking coffee, meditating, exercising, or sleeping well can boost one’s performance in any given area and are tolerated by society. Even the use of language can have positive physical and psychological effects on the human brain, which can be liberating to the individual and immensely beneficial to society at large. And let’s not forget the fact that some of us are born into more access to developing literacy than others.

Given all these reasons, one could argue that cognitive abilities and talents are currently derived more from uncontrollable factors and luck than we like to admit. If anything, technologies like brain-machine interfaces can enhance individual autonomy and allow one a choice of how capable they become.

As Karim Jebari points out (pdf), if a certain characteristic or trait is required to perform a particular role and an individual lacks this trait, would it be wrong to implement the trait through brain-machine interfaces or genetic engineering? How is this different from any conventional form of learning or acquiring a skill? If anything, this would be removing limitations on individuals that result from factors outside their control, such as biological predisposition (or even traits induced from traumatic experiences) to act or perform in a certain way.

Another major ethical concern is equality. As with any other emerging technology, there are valid concerns that cognitive enhancement tech will benefit only the wealthy, thus exacerbating current inequalities. This is where public policy and regulations can play a pivotal role in the impact of technology on society.

Enhancement technologies can either contribute to inequality or allow us to solve it. Educating and empowering the under-privileged can happen at a much more rapid rate, helping the overall rate of human progress accelerate. The “normal range” for human capacity and intelligence, however it is defined, could shift dramatically towards more positive trends.

Many have also raised concerns over the negative applications of government-led biological enhancement, including eugenics-like movements and super-soldiers. Naturally, there are also issues of safety, security, and well-being, especially within the early stages of experimentation with enhancement techniques.

Brain-machine interfaces, for instance, could have implications on autonomy. The interface involves using information extracted from the brain to stimulate or modify systems in order to accomplish a goal. This part of the process can be enhanced by implementing an artificial intelligence system onto the interface—one that exposes the possibility of a third party potentially manipulating individual’s personalities, emotions, and desires by manipulating the interface.

A Tool For Transcendence
It’s important to discuss these risks, not so that we begin to fear and avoid such technologies, but so that we continue to advance in a way that minimizes harm and allows us to optimize the benefits.

Stephen Hawking notes that “with genetic engineering, we will be able to increase the complexity of our DNA, and improve the human race.” Indeed, the potential advantages of modifying biology are revolutionary. Doctors would gain access to a powerful tool to tackle disease, allowing us to live longer and healthier lives. We might be able to extend our lifespan and tackle aging, perhaps a critical step to becoming a space-faring species. We may begin to modify the brain’s building blocks to become more intelligent and capable of solving grand challenges.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. Human enhancement is bringing us closer to such a world—it could allow us to take control of our evolution and truly shape the future of our species.

Image Credit: GrAl/ Shutterstock.com Continue reading

Posted in Human Robots

#432031 Why the Rise of Self-Driving Vehicles ...

It’s been a long time coming. For years Waymo (formerly known as Google Chauffeur) has been diligently developing, driving, testing and refining its fleets of various models of self-driving cars. Now Waymo is going big. The company recently placed an order for several thousand new Chrysler Pacifica minivans and next year plans to launch driverless taxis in a number of US cities.

This deal raises one of the biggest unanswered questions about autonomous vehicles: if fleets of driverless taxis make it cheap and easy for regular people to get around, what’s going to happen to car ownership?

One popular line of thought goes as follows: as autonomous ride-hailing services become ubiquitous, people will no longer need to buy their own cars. This notion has a certain logical appeal. It makes sense to assume that as driverless taxis become widely available, most of us will eagerly sell the family car and use on-demand taxis to get to work, run errands, or pick up the kids. After all, vehicle ownership is pricey and most cars spend the vast majority of their lives parked.

Even experts believe commercial availability of autonomous vehicles will cause car sales to drop.

Market research firm KPMG estimates that by 2030, midsize car sales in the US will decline from today’s 5.4 million units sold each year to nearly half that number, a measly 2.1 million units. Another market research firm, ReThinkX, offers an even more pessimistic estimate (or optimistic, depending on your opinion of cars), predicting that autonomous vehicles will reduce consumer demand for new vehicles by a whopping 70 percent.

The reality is that the impending death of private vehicle sales is greatly exaggerated. Despite the fact that autonomous taxis will be a beneficial and widely-embraced form of urban transportation, we will witness the opposite. Most people will still prefer to own their own autonomous vehicle. In fact, the total number of units of autonomous vehicles sold each year is going to increase rather than decrease.

When people predict the demise of car ownership, they are overlooking the reality that the new autonomous automotive industry is not going to be just a re-hash of today’s car industry with driverless vehicles. Instead, the automotive industry of the future will be selling what could be considered an entirely new product: a wide variety of intelligent, self-guiding transportation robots. When cars become a widely used type of transportation robot, they will be cheap, ubiquitous, and versatile.

Several unique characteristics of autonomous vehicles will ensure that people will continue to buy their own cars.

1. Cost: Thanks to simpler electric engines and lighter auto bodies, autonomous vehicles will be cheaper to buy and maintain than today’s human-driven vehicles. Some estimates bring the price to $10K per vehicle, a stark contrast with today’s average of $30K per vehicle.

2. Personal belongings: Consumers will be able to do much more in their driverless vehicles, including work, play, and rest. This means they will want to keep more personal items in their cars.

3. Frequent upgrades: The average (human-driven) car today is owned for 10 years. As driverless cars become software-driven devices, their price/performance ratio will track to Moore’s law. Their rapid improvement will increase the appeal and frequency of new vehicle purchases.

4. Instant accessibility: In a dense urban setting, a driverless taxi is able to show up within minutes of being summoned. But not so in rural areas, where people live miles apart. For many, delay and “loss of control” over their own mobility will increase the appeal of owning their own vehicle.

5. Diversity of form and function: Autonomous vehicles will be available in a wide variety of sizes and shapes. Consumers will drive demand for custom-made, purpose-built autonomous vehicles whose form is adapted for a particular function.

Let’s explore each of these characteristics in more detail.

Autonomous vehicles will cost less for several reasons. For one, they will be powered by electric engines, which are cheaper to construct and maintain than gasoline-powered engines. Removing human drivers will also save consumers money. Autonomous vehicles will be much less likely to have accidents, hence they can be built out of lightweight, lower-cost materials and will be cheaper to insure. With the human interface no longer needed, autonomous vehicles won’t be burdened by the manufacturing costs of a complex dashboard, steering wheel, and foot pedals.

While hop-on, hop-off autonomous taxi-based mobility services may be ideal for some of the urban population, several sizeable customer segments will still want to own their own cars.

These include people who live in sparsely-populated rural areas who can’t afford to wait extended periods of time for a taxi to appear. Families with children will prefer to own their own driverless cars to house their childrens’ car seats and favorite toys and sippy cups. Another loyal car-buying segment will be die-hard gadget-hounds who will eagerly buy a sexy upgraded model every year or so, unable to resist the siren song of AI that is three times as safe, or a ride that is twice as smooth.

Finally, consider the allure of robotic diversity.

Commuters will invest in a home office on wheels, a sleek, traveling workspace resembling the first-class suite on an airplane. On the high end of the market, city-dwellers and country-dwellers alike will special-order custom-made autonomous vehicles whose shape and on-board gadgetry is adapted for a particular function or hobby. Privately-owned small businesses will buy their own autonomous delivery robot that could range in size from a knee-high, last-mile delivery pod, to a giant, long-haul shipping device.

As autonomous vehicles near commercial viability, Waymo’s procurement deal with Fiat Chrysler is just the beginning.

The exact value of this future automotive industry has yet to be defined, but research from Intel’s internal autonomous vehicle division estimates this new so-called “passenger economy” could be worth nearly $7 trillion a year. To position themselves to capture a chunk of this potential revenue, companies whose businesses used to lie in previously disparate fields such as robotics, software, ships, and entertainment (to name but a few) have begun to form a bewildering web of what they hope will be symbiotic partnerships. Car hailing and chip companies are collaborating with car rental companies, who in turn are befriending giant software firms, who are launching joint projects with all sizes of hardware companies, and so on.

Last year, car companies sold an estimated 80 million new cars worldwide. Over the course of nearly a century, car companies and their partners, global chains of suppliers and service providers, have become masters at mass-producing and maintaining sturdy and cost-effective human-driven vehicles. As autonomous vehicle technology becomes ready for mainstream use, traditional automotive companies are being forced to grapple with the painful realization that they must compete in a new playing field.

The challenge for traditional car-makers won’t be that people no longer want to own cars. Instead, the challenge will be learning to compete in a new and larger transportation industry where consumers will choose their product according to the appeal of its customized body and the quality of its intelligent software.

Melba Kurman and Hod Lipson are the authors of Driverless: Intelligent Cars and the Road Ahead and Fabricated: the New World of 3D Printing.

Image Credit: hfzimages / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#431999 Brain-Like Chips Now Beat the Human ...

Move over, deep learning. Neuromorphic computing—the next big thing in artificial intelligence—is on fire.

Just last week, two studies individually unveiled computer chips modeled after information processing in the human brain.

The first, published in Nature Materials, found a perfect solution to deal with unpredictability at synapses—the gap between two neurons that transmit and store information. The second, published in Science Advances, further amped up the system’s computational power, filling synapses with nanoclusters of supermagnetic material to bolster information encoding.

The result? Brain-like hardware systems that compute faster—and more efficiently—than the human brain.

“Ultimately we want a chip as big as a fingernail to replace one big supercomputer,” said Dr. Jeehwan Kim, who led the first study at MIT in Cambridge, Massachusetts.

Experts are hopeful.

“The field’s full of hype, and it’s nice to see quality work presented in an objective way,” said Dr. Carver Mead, an engineer at the California Institute of Technology in Pasadena not involved in the work.

Software to Hardware
The human brain is the ultimate computational wizard. With roughly 100 billion neurons densely packed into the size of a small football, the brain can deftly handle complex computation at lightning speed using very little energy.

AI experts have taken note. The past few years saw brain-inspired algorithms that can identify faces, falsify voices, and play a variety of games at—and often above—human capability.

But software is only part of the equation. Our current computers, with their transistors and binary digital systems, aren’t equipped to run these powerful algorithms.

That’s where neuromorphic computing comes in. The idea is simple: fabricate a computer chip that mimics the brain at the hardware level. Here, data is both processed and stored within the chip in an analog manner. Each artificial synapse can accumulate and integrate small bits of information from multiple sources and fire only when it reaches a threshold—much like its biological counterpart.

Experts believe the speed and efficiency gains will be enormous.

For one, the chips will no longer have to transfer data between the central processing unit (CPU) and storage blocks, which wastes both time and energy. For another, like biological neural networks, neuromorphic devices can support neurons that run millions of streams of parallel computation.

A “Brain-on-a-chip”
Optimism aside, reproducing the biological synapse in hardware form hasn’t been as easy as anticipated.

Neuromorphic chips exist in many forms, but often look like a nanoscale metal sandwich. The “bread” pieces are generally made of conductive plates surrounding a switching medium—a conductive material of sorts that acts like the gap in a biological synapse.

When a voltage is applied, as in the case of data input, ions move within the switching medium, which then creates conductive streams to stimulate the downstream plate. This change in conductivity mimics the way biological neurons change their “weight,” or the strength of connectivity between two adjacent neurons.

But so far, neuromorphic synapses have been rather unpredictable. According to Kim, that’s because the switching medium is often comprised of material that can’t channel ions to exact locations on the downstream plate.

“Once you apply some voltage to represent some data with your artificial neuron, you have to erase and be able to write it again in the exact same way,” explains Kim. “But in an amorphous solid, when you write again, the ions go in different directions because there are lots of defects.”

In his new study, Kim and colleagues swapped the jelly-like switching medium for silicon, a material with only a single line of defects that acts like a channel to guide ions.

The chip starts with a thin wafer of silicon etched with a honeycomb-like pattern. On top is a layer of silicon germanium—something often present in transistors—in the same pattern. This creates a funnel-like dislocation, a kind of Grand Canal that perfectly shuttles ions across the artificial synapse.

The researchers then made a neuromorphic chip containing these synapses and shot an electrical zap through them. Incredibly, the synapses’ response varied by only four percent—much higher than any neuromorphic device made with an amorphous switching medium.

In a computer simulation, the team built a multi-layer artificial neural network using parameters measured from their device. After tens of thousands of training examples, their neural network correctly recognized samples 95 percent of the time, just 2 percent lower than state-of-the-art software algorithms.

The upside? The neuromorphic chip requires much less space than the hardware that runs deep learning algorithms. Forget supercomputers—these chips could one day run complex computations right on our handheld devices.

A Magnetic Boost
Meanwhile, in Boulder, Colorado, Dr. Michael Schneider at the National Institute of Standards and Technology also realized that the standard switching medium had to go.

“There must be a better way to do this, because nature has figured out a better way to do this,” he says.

His solution? Nanoclusters of magnetic manganese.

Schneider’s chip contained two slices of superconducting electrodes made out of niobium, which channel electricity with no resistance. When researchers applied different magnetic fields to the synapse, they could control the alignment of the manganese “filling.”

The switch gave the chip a double boost. For one, by aligning the switching medium, the team could predict the ion flow and boost uniformity. For another, the magnetic manganese itself adds computational power. The chip can now encode data in both the level of electrical input and the direction of the magnetisms without bulking up the synapse.

It seriously worked. At one billion times per second, the chips fired several orders of magnitude faster than human neurons. Plus, the chips required just one ten-thousandth of the energy used by their biological counterparts, all the while synthesizing input from nine different sources in an analog manner.

The Road Ahead
These studies show that we may be nearing a benchmark where artificial synapses match—or even outperform—their human inspiration.

But to Dr. Steven Furber, an expert in neuromorphic computing, we still have a ways before the chips go mainstream.

Many of the special materials used in these chips require specific temperatures, he says. Magnetic manganese chips, for example, require temperatures around absolute zero to operate, meaning they come with the need for giant cooling tanks filled with liquid helium—obviously not practical for everyday use.

Another is scalability. Millions of synapses are necessary before a neuromorphic device can be used to tackle everyday problems such as facial recognition. So far, no deal.

But these problems may in fact be a driving force for the entire field. Intense competition could push teams into exploring different ideas and solutions to similar problems, much like these two studies.

If so, future chips may come in diverse flavors. Similar to our vast array of deep learning algorithms and operating systems, the computer chips of the future may also vary depending on specific requirements and needs.

It is worth developing as many different technological approaches as possible, says Furber, especially as neuroscientists increasingly understand what makes our biological synapses—the ultimate inspiration—so amazingly efficient.

Image Credit: arakio / Shutterstock.com Continue reading

Posted in Human Robots

#431995 The 10 Grand Challenges Facing Robotics ...

Robotics research has been making great strides in recent years, but there are still many hurdles to the machines becoming a ubiquitous presence in our lives. The journal Science Robotics has now identified 10 grand challenges the field will have to grapple with to make that a reality.

Editors conducted an online survey on unsolved challenges in robotics and assembled an expert panel of roboticists to shortlist the 30 most important topics, which were then grouped into 10 grand challenges that could have major impact in the next 5 to 10 years. Here’s what they came up with.

1. New Materials and Fabrication Schemes
Roboticists are beginning to move beyond motors, gears, and sensors by experimenting with things like artificial muscles, soft robotics, and new fabrication methods that combine multiple functions in one material. But most of these advances have been “one-off” demonstrations, which are not easy to combine.

Multi-functional materials merging things like sensing, movement, energy harvesting, or energy storage could allow more efficient robot designs. But combining these various properties in a single machine will require new approaches that blend micro-scale and large-scale fabrication techniques. Another promising direction is materials that can change over time to adapt or heal, but this requires much more research.

2. Bioinspired and Bio-Hybrid Robots
Nature has already solved many of the problems roboticists are trying to tackle, so many are turning to biology for inspiration or even incorporating living systems into their robots. But there are still major bottlenecks in reproducing the mechanical performance of muscle and the ability of biological systems to power themselves.

There has been great progress in artificial muscles, but their robustness, efficiency, and energy and power density need to be improved. Embedding living cells into robots can overcome challenges of powering small robots, as well as exploit biological features like self-healing and embedded sensing, though how to integrate these components is still a major challenge. And while a growing “robo-zoo” is helping tease out nature’s secrets, more work needs to be done on how animals transition between capabilities like flying and swimming to build multimodal platforms.

3. Power and Energy
Energy storage is a major bottleneck for mobile robotics. Rising demand from drones, electric vehicles, and renewable energy is driving progress in battery technology, but the fundamental challenges have remained largely unchanged for years.

That means that in parallel to battery development, there need to be efforts to minimize robots’ power utilization and give them access to new sources of energy. Enabling them to harvest energy from their environment and transmitting power to them wirelessly are two promising approaches worthy of investigation.

4. Robot Swarms
Swarms of simple robots that assemble into different configurations to tackle various tasks can be a cheaper, more flexible alternative to large, task-specific robots. Smaller, cheaper, more powerful hardware that lets simple robots sense their environment and communicate is combining with AI that can model the kind of behavior seen in nature’s flocks.

But there needs to be more work on the most efficient forms of control at different scales—small swarms can be controlled centrally, but larger ones need to be more decentralized. They also need to be made robust and adaptable to the changing conditions of the real world and resilient to deliberate or accidental damage. There also needs to be more work on swarms of non-homogeneous robots with complementary capabilities.

5. Navigation and Exploration
A key use case for robots is exploring places where humans cannot go, such as the deep sea, space, or disaster zones. That means they need to become adept at exploring and navigating unmapped, often highly disordered and hostile environments.

The major challenges include creating systems that can adapt, learn, and recover from navigation failures and are able to make and recognize new discoveries. This will require high levels of autonomy that allow the robots to monitor and reconfigure themselves while being able to build a picture of the world from multiple data sources of varying reliability and accuracy.

6. AI for Robotics
Deep learning has revolutionized machines’ ability to recognize patterns, but that needs to be combined with model-based reasoning to create adaptable robots that can learn on the fly.

Key to this will be creating AI that’s aware of its own limitations and can learn how to learn new things. It will also be important to create systems that are able to learn quickly from limited data rather than the millions of examples used in deep learning. Further advances in our understanding of human intelligence will be essential to solving these problems.

7. Brain-Computer Interfaces
BCIs will enable seamless control of advanced robotic prosthetics but could also prove a faster, more natural way to communicate instructions to robots or simply help them understand human mental states.

Most current approaches to measuring brain activity are expensive and cumbersome, though, so work on compact, low-power, and wireless devices will be important. They also tend to involve extended training, calibration, and adaptation due to the imprecise nature of reading brain activity. And it remains to be seen if they will outperform simpler techniques like eye tracking or reading muscle signals.

8. Social Interaction
If robots are to enter human environments, they will need to learn to deal with humans. But this will be difficult, as we have very few concrete models of human behavior and we are prone to underestimate the complexity of what comes naturally to us.

Social robots will need to be able to perceive minute social cues like facial expression or intonation, understand the cultural and social context they are operating in, and model the mental states of people they interact with to tailor their dealings with them, both in the short term and as they develop long-standing relationships with them.

9. Medical Robotics
Medicine is one of the areas where robots could have significant impact in the near future. Devices that augment a surgeon’s capabilities are already in regular use, but the challenge will be to increase the autonomy of these systems in such a high-stakes environment.

Autonomous robot assistants will need to be able to recognize human anatomy in a variety of contexts and be able to use situational awareness and spoken commands to understand what’s required of them. In surgery, autonomous robots could perform the routine steps of a procedure, giving way to the surgeon for more complicated patient-specific bits.

Micro-robots that operate inside the human body also hold promise, but there are still many roadblocks to their adoption, including effective delivery systems, tracking and control methods, and crucially, finding therapies where they improve on current approaches.

10. Robot Ethics and Security
As the preceding challenges are overcome and robots are increasingly integrated into our lives, this progress will create new ethical conundrums. Most importantly, we may become over-reliant on robots.

That could lead to humans losing certain skills and capabilities, making us unable to take the reins in the case of failures. We may end up delegating tasks that should, for ethical reasons, have some human supervision, and allow people to pass the buck to autonomous systems in the case of failure. It could also reduce self-determination, as human behaviors change to accommodate the routines and restrictions required for robots and AI to work effectively.

Image Credit: Zenzen / Shutterstock.com Continue reading

Posted in Human Robots