Tag Archives: control

#436984 Robots to the Rescue: How They Can Help ...

As the coronavirus pandemic forces people to keep their distance, could this be robots‘ time to shine? A group of scientists think so, and they’re calling for robots to do the “dull, dirty, and dangerous jobs” of infectious disease management.

Social distancing has emerged as one of the most effective strategies for slowing the spread of COVID-19, but it’s also bringing many jobs to a standstill and severely restricting our daily lives. And unfortunately, the one group that can’t rely on its protective benefits are the medical and emergency services workers we’re relying on to save us.

Robots could be a solution, according to the editorial board of Science Robotics, by helping replace humans in a host of critical tasks, from disinfecting hospitals to collecting patient samples and automating lab tests.

According to the authors, the key areas where robots could help are clinical care, logistics, and reconnaissance, which refers to tasks like identifying the infected or making sure people comply with quarantines or social distancing requirements. Outside of the medical sphere, robots could also help keep the economy and infrastructure going by standing in for humans in factories or vital utilities like waste management or power plants.

When it comes to clinical care, robots can play important roles in disease prevention, diagnosis and screening, and patient care, the researchers say. Robots have already been widely deployed to disinfect hospitals and other public spaces either using UV light that kills bugs or by repurposing agricultural robots and drones to spray disinfectant, reducing the exposure of cleaning staff to potentially contaminated surfaces. They are also being used to carry out crucial deliveries of food and medication without exposing humans.

But they could also play an important role in tracking the disease, say the researchers. Thermal cameras combined with image recognition algorithms are already being used to detect potential cases at places like airports, but incorporating them into mobile robots or drones could greatly expand the coverage of screening programs.

A more complex challenge—but one that could significantly reduce medical workers’ exposure to the virus—would be to design robots that could automate the collection of nasal swabs used to test for COVID-19. Similarly automated blood collection for tests could be of significant help, and researchers are already investigating using ultrasound to help robots locate veins to draw blood from.

Convincing people it’s safe to let a robot stick a swab up their nose or jab a needle in their arm might be a hard sell right now, but a potentially more realistic scenario would be to get robots to carry out laboratory tests on collected samples to reduce exposure to lab technicians. Commercial laboratory automation systems already exist, so this might be a more achievable near-term goal.

Not all solutions need to be automated, though. While autonomous systems will be helpful for reducing the workload of stretched health workers, remote systems can still provide useful distancing. Remote control robotics systems are already becoming increasingly common in the delicate business of surgery, so it would be entirely feasible to create remote systems to carry out more prosaic medical tasks.

Such systems would make it possible for experts to contribute remotely in many different places without having to travel. And robotic systems could combine medical tasks like patient monitoring with equally important social interaction for people who may have been shut off from human contact.

In a teleconference last week Guang-Zhong Yang, a medical roboticist from Carnegie Mellon University and founding editor of Science Robotics, highlighted the importance of including both doctors and patients in the design of these robots to ensure they are safe and effective, but also to make sure people trust them to observe social protocols and not invade their privacy.

But Yang also stressed the importance of putting the pieces in place to enable the rapid development and deployment of solutions. During the 2015 Ebola outbreak, the White House Office of Science and Technology Policy and the National Science Foundation organized workshops to identify where robotics could help deal with epidemics.

But once the threat receded, attention shifted elsewhere, and by the time the next pandemic came around little progress had been made on potential solutions. The result is that it’s unclear how much help robots will really be able to provide to the COVID-19 response.

That means it’s crucial to invest in a sustained research effort into this field, say the paper’s authors, with more funding and multidisciplinary research partnerships between government agencies and industry so that next time around we will be prepared.

“These events are rare and then it’s just that people start to direct their efforts to other applications,” said Yang. “So I think this time we really need to nail it, because without a sustained approach to this history will repeat itself and robots won’t be ready.”

Image Credit: ABB’s YuMi collaborative robot. Image courtesy of ABB Continue reading

Posted in Human Robots

#436962 Scientists Engineered Neurons to Make ...

Electricity plays a surprisingly powerful role in our bodies. While most people are aware that it plays a crucial role in carrying signals to and from our nerves, our bodies produce electric fields that can do everything from helping heal wounds to triggering the release of hormones.

Electric fields can influence a host of important cellular behavior, like directional migration, proliferation, division, or even differentiation into different cell types. The work of Michael Levin at Tufts University even suggests that electrical fields may play a crucial role in the way our bodies organize themselves.

This has prompted considerable interest in exploiting our body’s receptiveness to electrical stimulation for therapeutic means, but given the diffuse nature of electrical fields a key challenge is finding a way to localize these effects. Conductive polymers have proven a useful tool in this regard thanks to their good electrical properties and biocompatibility, and have been used in everything from neural implants to biosensors.

But now, a team at Stanford University has developed a way to genetically engineer neurons to build the materials into their own cell membranes. The approach could make it possible to target highly specific groups of cells, providing unprecedented control over the body’s response to electrical stimulation.

In a paper in Science, the team explained how they used re-engineered viruses to deliver DNA that hijacks cells’ biosynthesis machinery to create an enzyme that assembles electroactive polymers onto their membranes. This changes the electrical properties of the cells, which the team demonstrated could be used to control their behavior.

They used the approach to modulate neuronal firing in cultures of rat hippocampal neurons, mouse brain slices, and even human cortical spheroids. Most impressively, they showed that they could coax the neurons of living C. elegans worms to produce the polymers in large enough quantities to alter their behavior without impairing the cells’ natural function.

Translating the idea to humans poses major challenges, not least because the viruses used to deliver the genetic changes are still a long way from being approved for clinical use. But the ability to precisely target specific cells using a genetic approach holds enormous promise for bioelectronic medicine, Kevin Otto and Christine Schmidt from the University of Florida say in an accompanying perspective.

Interest is booming in therapies that use electrical stimulation of neural circuits as an alternative to drugs for diseases as varied as arthritis, Alzheimer’s, diabetes, and cardiovascular disease, and hundreds of clinical trials are currently underway.

At present these approaches rely on electrodes that can provide some level of localization, but because different kinds of nerve cells are often packed closely together it’s proven hard to stimulate exactly the right nerves, say Otto and Schmidt. This new approach makes it possible to boost the conductivity of specific cell types, which could make these kinds of interventions dramatically more targeted.

Besides disease-focused bioelectronic interventions, Otto and Schmidt say the approach could prove invaluable for helping to interface advanced prosthetics with patients’ nervous systems by making it possible to excite sensory neurons without accidentally triggering motor neurons, or vice versa.

More speculatively, the approach could one day help create far more efficient bridges between our minds and machines. One of the major challenges for brain-machine interfaces is recording from specific neurons, something that a genetically targeted approach might be able to help greatly with.

If the researchers can replicate the ability to build electronic-tissue “composites” in humans, we may be well on our way to the cyborg future predicted by science fiction.

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436911 Scientists Linked Artificial and ...

Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.

Whoa.

We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.

As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.

This month, an international team put all of those ingredients together, turning theory into reality.

The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.

The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.

That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.

And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.

The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.

The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.

Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.

Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.

Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.

That’s what this study did.

A Hybrid Network
Still with me? Let’s talk network.

It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.

Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).

So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.

To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.

Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.

Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.

You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.

Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.

Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.

It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.

However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.

While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.

“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots

#436504 20 Technology Metatrends That Will ...

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “metatrends” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom up.

Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

Let’s dive in.

20 Metatrends for the 2020s
(1) Continued increase in global abundance: The number of individuals in extreme poverty continues to drop, as the middle-income population continues to rise. This metatrend is driven by the convergence of high-bandwidth and low-cost communication, ubiquitous AI on the cloud, and growing access to AI-aided education and AI-driven healthcare. Everyday goods and services (finance, insurance, education, and entertainment) are being digitized and becoming fully demonetized, available to the rising billion on mobile devices.

(2) Global gigabit connectivity will connect everyone and everything, everywhere, at ultra-low cost: The deployment of both licensed and unlicensed 5G, plus the launch of a multitude of global satellite networks (OneWeb, Starlink, etc.), allow for ubiquitous, low-cost communications for everyone, everywhere, not to mention the connection of trillions of devices. And today’s skyrocketing connectivity is bringing online an additional three billion individuals, driving tens of trillions of dollars into the global economy. This metatrend is driven by the convergence of low-cost space launches, hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(3) The average human healthspan will increase by 10+ years: A dozen game-changing biotech and pharmaceutical solutions (currently in Phase 1, 2, or 3 clinical trials) will reach consumers this decade, adding an additional decade to the human healthspan. Technologies include stem cell supply restoration, wnt pathway manipulation, senolytic medicines, a new generation of endo-vaccines, GDF-11, and supplementation of NMD/NAD+, among several others. And as machine learning continues to mature, AI is set to unleash countless new drug candidates, ready for clinical trials. This metatrend is driven by the convergence of genome sequencing, CRISPR technologies, AI, quantum computing, and cellular medicine.

(4) An age of capital abundance will see increasing access to capital everywhere: From 2016 – 2018 (and likely in 2019), humanity hit all-time highs in the global flow of seed capital, venture capital, and sovereign wealth fund investments. While this trend will witness some ups and downs in the wake of future recessions, it is expected to continue its overall upward trajectory. Capital abundance leads to the funding and testing of ‘crazy’ entrepreneurial ideas, which in turn accelerate innovation. Already, $300 billion in crowdfunding is anticipated by 2025, democratizing capital access for entrepreneurs worldwide. This metatrend is driven by the convergence of global connectivity, dematerialization, demonetization, and democratization.

(5) Augmented reality and the spatial web will achieve ubiquitous deployment: The combination of augmented reality (yielding Web 3.0, or the spatial web) and 5G networks (offering 100Mb/s – 10Gb/s connection speeds) will transform how we live our everyday lives, impacting every industry from retail and advertising to education and entertainment. Consumers will play, learn, and shop throughout the day in a newly intelligent, virtually overlaid world. This metatrend will be driven by the convergence of hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(6) Everything is smart, embedded with intelligence: The price of specialized machine learning chips is dropping rapidly with a rise in global demand. Combined with the explosion of low-cost microscopic sensors and the deployment of high-bandwidth networks, we’re heading into a decade wherein every device becomes intelligent. Your child’s toy remembers her face and name. Your kids’ drone safely and diligently follows and videos all the children at the birthday party. Appliances respond to voice commands and anticipate your needs.

(7) AI will achieve human-level intelligence: As predicted by technologist and futurist Ray Kurzweil, artificial intelligence will reach human-level performance this decade (by 2030). Through the 2020s, AI algorithms and machine learning tools will be increasingly made open source, available on the cloud, allowing any individual with an internet connection to supplement their cognitive ability, augment their problem-solving capacity, and build new ventures at a fraction of the current cost. This metatrend will be driven by the convergence of global high-bandwidth connectivity, neural networks, and cloud computing. Every industry, spanning industrial design, healthcare, education, and entertainment, will be impacted.

(8) AI-human collaboration will skyrocket across all professions: The rise of “AI as a Service” (AIaaS) platforms will enable humans to partner with AI in every aspect of their work, at every level, in every industry. AIs will become entrenched in everyday business operations, serving as cognitive collaborators to employees—supporting creative tasks, generating new ideas, and tackling previously unattainable innovations. In some fields, partnership with AI will even become a requirement. For example: in the future, making certain diagnoses without the consultation of AI may be deemed malpractice.

(9) Most individuals adapt a JARVIS-like “software shell” to improve their quality of life: As services like Alexa, Google Home, and Apple Homepod expand in functionality, such services will eventually travel beyond the home and become your cognitive prosthetic 24/7. Imagine a secure JARVIS-like software shell that you give permission to listen to all your conversations, read your email, monitor your blood chemistry, etc. With access to such data, these AI-enabled software shells will learn your preferences, anticipate your needs and behavior, shop for you, monitor your health, and help you problem-solve in support of your mid- and long-term goals.

(10) Globally abundant, cheap renewable energy: Continued advancements in solar, wind, geothermal, hydroelectric, nuclear, and localized grids will drive humanity towards cheap, abundant, and ubiquitous renewable energy. The price per kilowatt-hour will drop below one cent per kilowatt-hour for renewables, just as storage drops below a mere three cents per kilowatt-hour, resulting in the majority displacement of fossil fuels globally. And as the world’s poorest countries are also the world’s sunniest, the democratization of both new and traditional storage technologies will grant energy abundance to those already bathed in sunlight.

(11) The insurance industry transforms from “recovery after risk” to “prevention of risk”: Today, fire insurance pays you after your house burns down; life insurance pays your next-of-kin after you die; and health insurance (which is really sick insurance) pays only after you get sick. This next decade, a new generation of insurance providers will leverage the convergence of machine learning, ubiquitous sensors, low-cost genome sequencing, and robotics to detect risk, prevent disaster, and guarantee safety before any costs are incurred.

(12) Autonomous vehicles and flying cars will redefine human travel (soon to be far faster and cheaper): Fully autonomous vehicles, car-as-a-service fleets, and aerial ride-sharing (flying cars) will be fully operational in most major metropolitan cities in the coming decade. The cost of transportation will plummet 3-4X, transforming real estate, finance, insurance, the materials economy, and urban planning. Where you live and work, and how you spend your time, will all be fundamentally reshaped by this future of human travel. Your kids and elderly parents will never drive. This metatrend will be driven by the convergence of machine learning, sensors, materials science, battery storage improvements, and ubiquitous gigabit connections.

(13) On-demand production and on-demand delivery will birth an “instant economy of things”: Urban dwellers will learn to expect “instant fulfillment” of their retail orders as drone and robotic last-mile delivery services carry products from local supply depots directly to your doorstep. Further riding the deployment of regional on-demand digital manufacturing (3D printing farms), individualized products can be obtained within hours, anywhere, anytime. This metatrend is driven by the convergence of networks, 3D printing, robotics, and artificial intelligence.

(14) Ability to sense and know anything, anytime, anywhere: We’re rapidly approaching the era wherein 100 billion sensors (the Internet of Everything) is monitoring and sensing (imaging, listening, measuring) every facet of our environments, all the time. Global imaging satellites, drones, autonomous car LIDARs, and forward-looking augmented reality (AR) headset cameras are all part of a global sensor matrix, together allowing us to know anything, anytime, anywhere. This metatrend is driven by the convergence of terrestrial, atmospheric and space-based sensors, vast data networks, and machine learning. In this future, it’s not “what you know,” but rather “the quality of the questions you ask” that will be most important.

(15) Disruption of advertising: As AI becomes increasingly embedded in everyday life, your custom AI will soon understand what you want better than you do. In turn, we will begin to both trust and rely upon our AIs to make most of our buying decisions, turning over shopping to AI-enabled personal assistants. Your AI might make purchases based upon your past desires, current shortages, conversations you’ve allowed your AI to listen to, or by tracking where your pupils focus on a virtual interface (i.e. what catches your attention). As a result, the advertising industry—which normally competes for your attention (whether at the Superbowl or through search engines)—will have a hard time influencing your AI. This metatrend is driven by the convergence of machine learning, sensors, augmented reality, and 5G/networks.

(16) Cellular agriculture moves from the lab into inner cities, providing high-quality protein that is cheaper and healthier: This next decade will witness the birth of the most ethical, nutritious, and environmentally sustainable protein production system devised by humankind. Stem cell-based ‘cellular agriculture’ will allow the production of beef, chicken, and fish anywhere, on-demand, with far higher nutritional content, and a vastly lower environmental footprint than traditional livestock options. This metatrend is enabled by the convergence of biotechnology, materials science, machine learning, and AgTech.

(17) High-bandwidth brain-computer interfaces (BCIs) will come online for public use: Technologist and futurist Ray Kurzweil has predicted that in the mid-2030s, we will begin connecting the human neocortex to the cloud. This next decade will see tremendous progress in that direction, first serving those with spinal cord injuries, whereby patients will regain both sensory capacity and motor control. Yet beyond assisting those with motor function loss, several BCI pioneers are now attempting to supplement their baseline cognitive abilities, a pursuit with the potential to increase their sensorium, memory, and even intelligence. This metatrend is fueled by the convergence of materials science, machine learning, and robotics.

(18) High-resolution VR will transform both retail and real estate shopping: High-resolution, lightweight virtual reality headsets will allow individuals at home to shop for everything from clothing to real estate from the convenience of their living room. Need a new outfit? Your AI knows your detailed body measurements and can whip up a fashion show featuring your avatar wearing the latest 20 designs on a runway. Want to see how your furniture might look inside a house you’re viewing online? No problem! Your AI can populate the property with your virtualized inventory and give you a guided tour. This metatrend is enabled by the convergence of: VR, machine learning, and high-bandwidth networks.

(19) Increased focus on sustainability and the environment: An increase in global environmental awareness and concern over global warming will drive companies to invest in sustainability, both from a necessity standpoint and for marketing purposes. Breakthroughs in materials science, enabled by AI, will allow companies to drive tremendous reductions in waste and environmental contamination. One company’s waste will become another company’s profit center. This metatrend is enabled by the convergence of materials science, artificial intelligence, and broadband networks.

(20) CRISPR and gene therapies will minimize disease: A vast range of infectious diseases, ranging from AIDS to Ebola, are now curable. In addition, gene-editing technologies continue to advance in precision and ease of use, allowing families to treat and ultimately cure hundreds of inheritable genetic diseases. This metatrend is driven by the convergence of various biotechnologies (CRISPR, gene therapy), genome sequencing, and artificial intelligence.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots