Tag Archives: computing
#437610 How Intel’s OpenBot Wants to Make ...
You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”
This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.
Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.
One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.
As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.
And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.
Image: OpenBot
Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.
If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”
Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.
The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading
#437577 A Swarm of Cyborg Cockroaches That Lives ...
Digital Nature Group at the University of Tsukuba in Japan is working towards a “post ubiquitous computing era consisting of seamless combination of computational resources and non-computational resources.” By “non-computational resources,” they mean leveraging the natural world, which for better or worse includes insects.
At small scales, the capabilities of insects far exceed the capabilities of robots. I get that. And I get that turning cockroaches into an army of insect cyborgs could be useful in a variety of ways. But what makes me fundamentally uncomfortable is the idea that “in the future, they’ll appear out of nowhere without us recognizing it, fulfilling their tasks and then hiding.” In other words, you’ll have cyborg cockroaches hiding all over your house, all the time.
Warning: This article contains video of cockroaches being modified with cybernetic implants that some people may find upsetting.
Remote controlling cockroaches isn’t a new idea, and it’s a fairly simple one. By stimulating the left or right antenna nerves of the cockroach, you can make it think that it’s running into something, and get it to turn in the opposite direction. Add wireless connectivity, some fiducial markers, an overhead camera system, and a bunch of cyborg cockroaches, and you have a resilient swarm that can collaborate on tasks. The researchers suggest that the swarm could be used as a display (by making each cockroach into a pixel), to transport objects, or to draw things. There’s also some mention of “input or haptic interfaces or an audio device,” which frankly sounds horrible.
The reason to use cockroaches is that you can take advantage of their impressive ruggedness, efficiency, high power to weight ratio, and mobility. They can also feed themselves, meaning that whenever you don’t need the swarm to perform some task for you, you can deactivate the control system and let them scurry off to find crumbs in dark places.
There are many other swarm robotic platforms that can perform what you’re seeing these cyborg roaches do, but according to the researchers, the reason to use cockroaches is that you can take advantage of their impressive ruggedness, efficiency, high power to weight ratio, and mobility. They’re a lot messier (yay biology!), but they can also feed themselves, meaning that whenever you don’t need the swarm to perform some task for you, you can deactivate the control system and let them scurry off to find crumbs in dark places. And when you need them again, turn the control system on and experience the nightmare of your cyborg cockroach swarm reassembling itself from all over your house.
While we’re on the subject of cockroach hacking, we would be doing you a disservice if we didn’t share some of project leader Yuga Tsukuda’s other projects. Here’s a cockroach-powered clock, about which the researchers note that “it is difficult to control the cockroaches when trying to control them by electrical stimulation because they move spontaneously. However, by cutting off the head and removing the brain, they do not move spontaneously and the control by the computer becomes easy.” So, zombie cockroaches. Good then.
And if that’s not enough for you, how about this:
The researchers describe this project as an “attempt to use cockroaches for makeup by sticking them on the face.” They stick electrodes into the cockroaches to make them wiggle their legs when electrical stimulation is applied. And the peacock feathers? They “make the cockroach movement bigger, and create a cosmic mystery.” Continue reading