Tag Archives: computing

#436065 From Mainframes to PCs: What Robot ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Autonomous robots are coming around slowly. We already got autonomous vacuum cleaners, autonomous lawn mowers, toys that bleep and blink, and (maybe) soon autonomous cars. Yet, generation after generation, we keep waiting for the robots that we all know from movies and TV shows. Instead, businesses seem to get farther and farther away from the robots that are able to do a large variety of tasks using general-purpose, human anatomy-inspired hardware.

Although these are the droids we have been looking for, anything that came close, such as Willow Garage’s PR2 or Rethink Robotics’ Baxter has bitten the dust. With building a robotic company being particularly hard, compounding business risk with technological risk, the trend goes from selling robots to selling actual services like mowing your lawn, provide taxi rides, fulfilling retail orders, or picking strawberries by the pound. Unfortunately for fans of R2-D2 and C-3PO, these kind of business models emphasize specialized, room- or fridge-sized hardware that is optimized for one very specific task, but does not contribute to a general-purpose robotic platform.

We have actually seen something very similar in the personal computer (PC) industry. In the 1950s, even though computers could be as big as an entire room and were only available to a selected few, the public already had a good idea of what computers would look like. A long list of fictional computers started to populate mainstream entertainment during that time. In a 1962 New York Times article titled “Pocket Computer to Replace Shopping List,” visionary scientist John Mauchly stated that “there is no reason to suppose the average boy or girl cannot be master of a personal computer.”

In 1968, Douglas Engelbart gave us the “mother of all demos,” browsing hypertext on a graphical screen and a mouse, and other ideas that have become standard only decades later. Now that we have finally seen all of this, it might be helpful to examine what actually enabled the computing revolution to learn where robotics is really at and what we need to do next.

The parallels between computers and robots

In the 1970s, mainframes were about to be replaced by the emerging class of mini-computers, fridge-sized devices that cost less than US $25,000 ($165,000 in 2019 dollars). These computers did not use punch-cards, but could be programmed in Fortran and BASIC, dramatically expanding the ease with which potential applications could be created. Yet it was still unclear whether mini-computers could ever replace big mainframes in applications that require fast and efficient processing of large amounts of data, let alone enter every living room. This is very similar to the robotics industry right now, where large-scale factory robots (mainframes) that have existed since the 1960s are seeing competition from a growing industry of collaborative robots that can safely work next to humans and can easily be installed and programmed (minicomputers). As in the ’70s, applications for these devices that reach system prices comparable to that of a luxury car are quite limited, and it is hard to see how they could ever become a consumer product.

Yet, as in the computer industry, successful architectures are quickly being cloned, driving prices down, and entirely new approaches on how to construct or program robotic arms are sprouting left and right. Arm makers are joined by manufacturers of autonomous carts, robotic grippers, and sensors. These components can be combined, paving the way for standard general purpose platforms that follow the model of the IBM PC, which built a capable, open architecture relying as much on commodity parts as possible.

General purpose robotic systems have not been successful for similar reasons that general purpose, also known as “personal,” computers took decades to emerge. Mainframes were custom-built for each application, while typewriters got smarter and smarter, not really leaving room for general purpose computers in between. Indeed, given the cost of hardware and the relatively little abilities of today’s autonomous robots, it is almost always smarter to build a special purpose machine than trying to make a collaborative mobile manipulator smart.

A current example is e-commerce grocery fulfillment. The current trend is to reserve underutilized parts of a brick-and-mortar store for a micro-fulfillment center that stores goods in little crates with an automated retrieval system and a (human) picker. A number of startups like Alert Innovation, Fabric, Ocado Technology, TakeOff Technologies, and Tompkins Robotics, to just name a few, have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves. Such a robotic store clerk would come much closer to our vision of a general purpose robot, but would require many copies of itself that crowd the aisles to churn out hundreds of orders per hour as a microwarehouse could. Although eventually more efficient, the margins in retail are already low and make it unlikely that this industry will produce the technological jump that we need to get friendly C-3POs manning the aisles.

Startups have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves, and would come much closer to our vision of a general purpose robot.

Mainframes were also attacked from the bottom. Fascination with the new digital technology has led to a hobbyist movement to create microcomputers that were sold via mail order or at RadioShack. Initially, a large number of small businesses was selling tens, at most hundreds, of devices, usually as a kit and with wooden enclosures. This trend culminated into the “1977 Trinity” in the form of the Apple II, the Commodore PET, and the Tandy TRS-80, complete computers that were sold for prices around $2500 (TRS) to $5000 (Apple) in today’s dollars. The main application of these computers was their programmability (in BASIC), which would enable consumers to “learn to chart your biorhythms, balance your checking account, or even control your home environment,” according to an original Apple advertisement. Similarly, there exists a myriad of gadgets that explore different aspects of robotics such as mobility, manipulation, and entertainment.

As in the fledgling personal computing industry, the advertised functionality was at best a model of the real deal. A now-famous milestone in entertainment robotics was the original Sony’s Aibo, a robotic dog that was advertised to have many properties that a real dog has such as develop its own personality, play with a toy, and interact with its owner. Released in 1999, and re-launched in 2018, the platform has a solid following among hobbyists and academics who like its programmability, but probably only very few users who accept the device as a pet stand-in.

There also exist countless “build-your-own-robotic-arm” kits. One of the more successful examples is the uArm, which sells for around $800, and is advertised to perform pick and place, assembly, 3D printing, laser engraving, and many other things that sound like high value applications. Using compelling videos of the robot actually doing these things in a constrained environment has led to two successful crowd-funding campaigns, and have established the robot as a successful educational tool.

Finally, there exist platforms that allow hobbyist programmers to explore mobility to construct robots that patrol your house, deliver items, or provide their users with telepresence abilities. An example of that is the Misty II. Much like with the original Apple II, there remains a disconnect between the price of the hardware and the fidelity of the applications that were available.

For computers, this disconnect began to disappear with the invention of the first electronic spreadsheet software VisiCalc that spun out of Harvard in 1979 and prompted many people to buy an entire microcomputer just to run the program. VisiCalc was soon joined by WordStar, a word processing application, that sold for close to $2000 in today’s dollars. WordStar, too, would entice many people to buy the entire hardware just to use the software. The two programs are early examples of what became known as “killer application.”

With factory automation being mature, and robots with the price tag of a minicomputer being capable of driving around and autonomously carrying out many manipulation tasks, the robotics industry is somewhere where the PC industry was between 1973—the release of the Xerox Alto, the first computer with a graphical user interface, mouse, and special software—and 1979—when microcomputers in the under $5000 category began to take off.

Killer apps for robots
So what would it take for robotics to continue to advance like computers did? The market itself already has done a good job distilling what the possible killer apps are. VCs and customers alike push companies who have set out with lofty goals to reduce their offering to a simple value proposition. As a result, companies that started at opposite ends often converge to mirror images of each other that offer very similar autonomous carts, (bin) picking, palletizing, depalletizing, or sorting solutions. Each of these companies usually serves a single application to a single vertical—for example bin-picking clothes, transporting warehouse goods, or picking strawberries by the pound. They are trying to prove that their specific technology works without spreading themselves too thin.

Very few of these companies have really taken off. One example is Kiva Systems, which turned into the logistic robotics division of Amazon. Kiva and others are structured around sound value propositions that are grounded in well-known user needs. As these solutions are very specialized, however, it is unlikely that they result into any economies of scale of the same magnitude that early computer users who bought both a spreadsheet and a word processor application for their expensive minicomputer could enjoy. What would make these robotic solutions more interesting is when functionality becomes stackable. Instead of just being able to do bin picking, palletizing, and transportation with the same hardware, these three skills could be combined to model entire processes.

A skill that is yet little addressed by startups and is historically owned by the mainframe equivalent of robotics is assembly of simple mechatronic devices. The ability to assemble mechatronic parts is equivalent to other tasks such as changing a light bulb, changing the batteries in a remote control, or tending machines like a lever-based espresso machine. These tasks would involve the autonomous execution of complete workflows possible using a single machine, eventually leading to an explosion of industrial productivity across all sectors. For example, picking up an item from a bin, arranging it on the robot, moving it elsewhere, and placing it into a shelf or a machine is a process that equally applies to a manufacturing environment, a retail store, or someone’s kitchen.

Image: Robotic Materials Inc.

Autonomous, vision and force-based assembly of the
Siemens robot learning challenge.

Even though many of the above applications are becoming possible, it is still very hard to get a platform off the ground without added components that provide “killer app” value of their own. Interesting examples are Rethink Robotics or the Robot Operating System (ROS). Rethink Robotics’ Baxter and Sawyer robots pioneered a great user experience (like the 1973 Xerox Alto, really the first PC), but its applications were difficult to extend beyond simple pick-and-place and palletizing and depalletizing items.

ROS pioneered interprocess communication software that was adapted to robotic needs (multiple computers, different programming languages) and the idea of software modularity in robotics, but—in the absence of a common hardware platform—hasn’t yet delivered a single application, e.g. for navigation, path planning, or grasping, that performs beyond research-grade demonstration level and won’t get discarded once developers turn to production systems. At the same time, an increasing number of robotic devices, such as robot arms or 3D perception systems that offer intelligent functionality, provide other ways to wire them together that do not require an intermediary computer, while keeping close control over the real-time aspects of their hardware.

Image: Robotic Materials Inc.

Robotic Materials GPR-1 combines a MIR-100 autonomous cart with an UR-5 collaborative robotic arm, an onRobot force/torque sensor and Robotic Materials’ SmartHand to perform out-of-the-box mobile assembly, bin picking, palletizing, and depalletizing tasks.

At my company, Robotic Materials Inc., we have made strides to identify a few applications such as bin picking and assembly, making them configurable with a single click by combining machine learning and optimization with an intuitive user interface. Here, users can define object classes and how to grasp them using a web browser, which then appear as first-class objects in a robot-specific graphical programming language. We have also done this for assembly, allowing users to stack perception-based picking and force-based assembly primitives by simply dragging and dropping appropriate commands together.

While such an approach might answer the question of a killer app for robots priced in the “minicomputer” range, it is unclear how killer app-type value can be generated with robots in the less-than-$5000 category. A possible answer is two-fold: First, with low-cost arms, mobility platforms, and entertainment devices continuously improving, a confluence of technology readiness and user innovation, like with the Apple II and VisiCalc, will eventually happen. For example, there is not much innovation needed to turn Misty into a home security system; the uArm into a low-cost bin-picking system; or an Aibo-like device into a therapeutic system for the elderly or children with autism.

Second, robots and their components have to become dramatically cheaper. Indeed, computers have seen an exponential reduction in price accompanied by an exponential increase in computational power, thanks in great part to Moore’s Law. This development has helped robotics too, allowing us to reach breakthroughs in mobility and manipulation due to the ability to process massive amounts of image and depth data in real-time, and we can expect it to continue to do so.

Is there a Moore’s Law for robots?
One might ask, however, how a similar dynamics might be possible for robots as a whole, including all their motors and gears, and what a “Moore’s Law” would look like for the robotics industry. Here, it helps to remember that the perpetuation of Moore’s Law is not the reason, but the result of the PC revolution. Indeed, the first killer apps for bookkeeping, editing, and gaming were so good that they unleashed tremendous consumer demand, beating the benchmark on what was thought to be physically possible over and over again. (I vividly remember 56 kbps to be the absolute maximum data rate for copper phone lines until DSL appeared.)

That these economies of scale are also applicable to mechatronics is impressively demonstrated by the car industry. A good example is the 2020 Prius Prime, a highly computerized plug-in hybrid, that is available for one third of the cost of my company’s GPR-1 mobile manipulator while being orders of magnitude more complex, sporting an electrical motor, a combustion engine, and a myriad of sensors and computers. It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal. Given that these robots are part of the equation, actively lowering cost of production, this might happen as fast as never before in the history of industrialization.

It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal.

There is one more driver that might make robots exponentially more capable: the cloud. Once a general purpose robot has learned or was programmed with a new skill, it could share it with every other robot. At some point, a grocer who buys a robot could assume that it already knows how to recognize and handle 99 percent of the retail items in the store. Likewise, a manufacturer can assume that the robot can handle and assemble every item available from McMaster-Carr and Misumi. Finally, families could expect a robot to know every kitchen item that Ikea and Pottery Barn is selling. Sounds like a labor intense problem, but probably more manageable than collecting footage for Google’s Street View using cars, tricycles, and snowmobiles, among other vehicles.

Strategies for robot startups
While we are waiting for these two trends—better and better applications and hardware with decreasing cost—to converge, we as a community have to keep exploring what the canonical robotic applications beyond mobility, bin picking, palletizing, depalletizing, and assembly are. We must also continue to solve the fundamental challenges that stand in the way of making these solutions truly general and robust.

For both questions, it might help to look at the strategies that have been critical in the development of the personal computer, which might equally well apply to robotics:

Start with a solution to a problem your customers have. Unfortunately, their problem is almost never that they need your sensor, widget, or piece of code, but something that already costs them money or negatively affects them in some other way. Example: There are many more people who had a problem calculating their taxes (and wanted to buy VisiCalc) than writing their own solution in BASIC.

Build as little of your own hardware as necessary. Your business model should be stronger than the margin you can make on the hardware. Why taking the risk? Example: Why build your own typewriter if you can write the best typewriting application that makes it worth buying a computer just for that?

If your goal is a platform, make sure it comes with a killer application, which alone justifies the platform cost. Example: Microcomputer companies came and went until the “1977 Trinity” intersected with the killer apps spreadsheet and word processors. Corollary: You can also get lucky.

Use an open architecture, which creates an ecosystem where others compete on creating better components and peripherals, while allowing others to integrate your solution into their vertical and stack it with other devices. Example: Both the Apple II and the IBM PC were completely open architectures, enabling many clones, thereby growing the user and developer base.

It’s worthwhile pursuing this. With most business processes already being digitized, general purpose robots will allow us to fill in gaps in mobility and manipulation, increasing productivity at levels only limited by the amount of resources and energy that are available, possibly creating a utopia in which creativity becomes the ultimate currency. Maybe we’ll even get R2-D2.

Nikolaus Correll is an associate professor of computer science at the University of Colorado at Boulder where he works on mobile manipulation and other robotics applications. He’s co-founder and CTO of Robotic Materials Inc., which is supported by the National Science Foundation and the National Institute of Standards and Technology via their Small Business Innovative Research (SBIR) programs. Continue reading

Posted in Human Robots

#436044 Want a Really Hard Machine Learning ...

What’s the world’s hardest machine learning problem? Autonomous vehicles? Robots that can walk? Cancer detection?

Nope, says Julian Sanchez. It’s agriculture.

Sanchez might be a little biased. He is the director of precision agriculture for John Deere, and is in charge of adding intelligence to traditional farm vehicles. But he does have a little perspective, having spent time working on software for both medical devices and air traffic control systems.

I met with Sanchez and Alexey Rostapshov, head of digital innovation at John Deere Labs, at the organization’s San Francisco offices last month. Labs launched in 2017 to take advantage of the area’s tech expertise, both to apply machine learning to in-house agricultural problems and to work with partners to build technologies that play nicely with Deere’s big green machines. Deere’s neighbors in San Francisco’s tech-heavy South of Market are LinkedIn, Salesforce, and Planet Labs, which puts it in a good position for recruiting.

“We’ve literally had folks knock on the door and say, ‘What are you doing here?’” says Rostapshov, and some return to drop off resumes.

Here’s why Sanchez believes agriculture is such a big challenge for artificial intelligence.

“It’s not just about driving tractors around,” he says, although autonomous driving technologies are part of the mix. (John Deere is doing a lot of work with precision GPS to improve autonomous driving, for example, and allow tractors to plan their own routes around fields.)

But more complex than the driving problem, says Sanchez, are the classification problems.

Corn: A Classic Classification Problem

Photo: Tekla Perry

One key effort, Sanchez says, are AI systems “that allow me to tell whether grain being harvested is good quality or low quality and to make automatic adjustment systems for the harvester.” The company is already selling an early version of this image analysis technology. But the many differences between grain types, and grains grown under different conditions, make this task a tough one for machine learning.

“Take corn,” Sanchez says. “Let’s say we are building a deep learning algorithm to detect this corn. And we take lots of pictures of kernels to give it. Say we pick those kernels in central Illinois. But, one mile over, the farmer planted a slightly different hybrid which has slightly different coloration of yellow. Meanwhile, this other farm harvested three days later in a field five miles away; it’s the same hybrid, but it also looks different.

“It’s an overwhelming classification challenge, and that’s just for corn. But you are not only doing it for corn, you have to add 20 more varieties of grain to the mix; and some, like canola, are almost microscopic.”

Even the ground conditions vary dramatically—far more than road conditions, Sanchez points out.

“Let’s say we are building a deep learning algorithm to detect how much residue is left on the soil after a harvest, including stubble and some chaff. Let’s drive 2,000 acres of fields in the Midwest looking at residue. That’s great, but I guarantee that if you go drive those the next year, it will look significantly different.

“Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen. And in agriculture, you always feel that there is a set of conditions that you haven’t yet classified.”

A Flood of Big Data

The scale of the data is also daunting, Rostapshov points out. “We are one of the largest users of cloud computing services in the world,” he says. “We are gathering 5 to 15 million measurements per second from 130,000 connected machines globally. We have over 150 million acres in our databases, using petabytes and petabytes [of storage]. We process more data than Twitter does.”

Much of this information is so-called dirty data, that is, it doesn’t share the same format or structure, because it’s coming not only from a wide variety of John Deere machines, but also includes data from some 100 other companies that have access to the platform, including weather information, aerial imagery, and soil analyses.

As a result, says Sanchez, Deere has had to make “tremendous investments in back-end data cleanup.”

Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen.”
—Julian Sanchez, John Deere

“We have gotten progressively more skilled at that problem,” he says. “We started simply by cleaning up our own data. You’d think it would be nice and neat, since it’s coming from our own machines, but there is a wide variety of different models and different years. Then we started geospatially tagging the agronomic data—the information about where you are applying herbicides and fertilizer and the like—coming in from our vehicles. When we started bringing in other data, from drones, say, we were already good at cleaning it up.”

John Deere’s Hiring Pitch

Hard problems can be a good thing to have for a company looking to hire machine learning engineers.

“Our opening line to potential recruits,” Sanchez says, “is ‘This stuff matters.’ Then, if we get a chance to talk to them more, we follow up with ‘Not only does this stuff matter, but the problems are really hard and interesting.’ When we explain the variability in farming and how we have to apply all the latest tools to these problems, we get their attention.”

Software engineers “know that feeding a growing population is a massive problem and are excited about the prospect of making a difference,” Rostapshov says.

Only 20 engineers work in the San Francisco labs right now, and that’s on a busy day—some of the researchers spend part of their time at Blue River Technology, a startup based in Sunnyvale that was acquired by Deere in 2017. About half of the researchers are focusing on AI. The Lab is in the process of doubling its office space (no word on staffing plans for that expansion yet).

“We are one of the largest users of cloud computing services in the world.”
—Alexey Rostapshov, John Deere Labs

Company-wide, Deere has thousands of software engineers, with many using AI and machine learning tools in their work, and about the same number of mechanical and electrical engineers, Sanchez reports. “If you look at our hiring 10 years ago,” he says, “it was heavily weighted to mechanical engineers. But if you look at those numbers now, it is by a large majority [engineers working] in the software space. We still need mechanical engineers—we do build green machines—but if you go by our footprint of tech talent, it is pretty safe to call John Deere a software company. And if you follow the key conversations that are happening in the company right now, 95 percent of them are software-related.”

For now, these software engineers are focused on developing technologies that allow farmers to “do more with less,” Sanchez says. Meaning, to get more and better crops from less fuel, less seed, less fertilizer, less pesticide, and fewer workers, and putting together building blocks that, he says, could eventually lead to fully autonomous farm vehicles. The data Deere collects today, for the most part, stays in silos (the virtual kind), with AI algorithms that analyze specific sets of data to provide guidance to individual farmers. At some point, however, with tools to anonymize data and buy-in from farmers, aggregating data could provide some powerful insights.

“We are not asking farmers for that yet,” Sanchez says. “We are not doing aggregation to look for patterns. We are focused on offering technology that allows an individual farmer to use less, on positioning ourselves to be in a neutral spot. We are not about selling you more seed or more fertilizer. So we are building up a good trust level. In the long term, we can have conversations about doing more with deep learning.” Continue reading

Posted in Human Robots

#436005 NASA Hiring Engineers to Develop “Next ...

It’s been nearly six years since NASA unveiled Valkyrie, a state-of-the-art full-size humanoid robot. After the DARPA Robotics Challenge, NASA has continued to work with Valkyrie at Johnson Space Center, and has also provided Valkyrie robots to several different universities. Although it’s not a new platform anymore (six years is a long time in robotics), Valkyrie is still very capable, with plenty of potential for robotics research.

With that in mind, we were caught by surprise when over the last several months, Jacobs, a Dallas-based engineering company that appears to provide a wide variety of technical services to anyone who wants them, has posted several open jobs in need of roboticists in the Houston, Texas, area who are interested in working with NASA on “the next generation of humanoid robot.”

Here are the relevant bullet points from the one of the job descriptions (which you can view at this link):

Work directly with NASA Johnson Space Center in designing the next generation of humanoid robot.

Join the Valkyrie humanoid robot team in NASA’s Robotic Systems Technology Branch.

Build on the success of the existing Valkyrie and Robonaut 2 humanoid robots and advance NASA’s ability to project a remote human presence and dexterous manipulation capability into challenging, dangerous, and distant environments both in space and here on earth.

The question is, why is NASA developing its own humanoid robot (again) when it could instead save a whole bunch of time and money by using a platform that already exists, whether it’s Atlas, Digit, Valkyrie itself, or one of the small handful of other humanoids that are more or less available? The only answer that I can come up with is that no existing platforms meet NASA’s requirements, whatever those may be. And if that’s the case, what kind of requirements are we talking about? The obvious one would be the ability to work in the kinds of environments that NASA specializes in—space, the Moon, and Mars.

Image: NASA

Artist’s concept of NASA’s Valkyrie humanoid robot working on the surface of Mars.

NASA’s existing humanoid robots, including Robonaut 2 and Valkyrie, were designed to operate on Earth. Robonaut 2 ended up going to space anyway (it’s recently returned to Earth for repairs), but its hardware was certainly never intended to function outside of the International Space Station. Working in a vacuum involves designing for a much more rigorous set of environmental challenges, and things get even worse on the Moon or on Mars, where highly abrasive dust gets everywhere.

We know that it’s possible to design robots for long term operation in these kinds of environments because we’ve done it before. But if you’re not actually going to send your robot off-world, there’s very little reason to bother making sure that it can operate through (say) 300° Celsius temperature swings like you’d find on the Moon. In the past, NASA has quite sensibly focused on designing robots that can be used as platforms for the development of software and techniques that could one day be applied to off-world operations, without over-engineering those specific robots to operate in places that they would almost certainly never go. As NASA increasingly focuses on a return to the Moon, though, maybe it’s time to start thinking about a humanoid robot that could actually do useful stuff on the lunar surface.

Image: NASA

Artist’s concept of the Gateway moon-orbiting space station (seen on the right) with an Orion crew vehicle approaching.

The other possibility that I can think of, and perhaps the more likely one, is that this next humanoid robot will be a direct successor to Robonaut 2, intended for NASA’s Gateway space station orbiting the Moon. Some of the robotics folks at NASA that we’ve talked to recently have emphasized how important robotics will be for Gateway:

Trey Smith, NASA Ames: Everybody at NASA is really excited about work on the Gateway space station that would be in near lunar space. We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations. And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.

If you have an un-crewed cargo vehicle that shows up stuffed to the rafters with cargo bags and it docks with the Gateway when there’s no crew there, it would be very useful to have intra-vehicular robots that can pull all those cargo bags out, unpack them, stow all the items, and then even allow the cargo vehicle to detach before the crew show up so that the crew don’t have to waste their time with that.

Julia Badger, NASA JSC: One of the systems on board Gateway is going to be intravehicular robots. They’re not going to necessarily look like Robonaut, but they’ll have some of the same functionality as Robonaut—being mobile, being able to carry payloads from one part of the module to another, doing some dexterous manipulation tasks, inspecting behind panels, those sorts of things.

Image: NASA

Artist’s concept of NASA’s Valkyrie humanoid robot working inside a spacecraft.

Since Gateway won’t be crewed by humans all of the time, it’ll be important to have a permanent robotic presence to keep things running while nobody is home while saving on resources by virtue of the fact that robots aren’t always eating food, drinking water, consuming oxygen, demanding that the temperature stays just so, and producing a variety of disgusting kinds of waste. Obviously, the robot won’t be as capable as humans, but if they can manage to do even basic continuing maintenance tasks (most likely through at least partial teleoperation), that would be very useful.

Photo: Evan Ackerman/IEEE Spectrum

NASA’s Robonaut team plans to perform a variety of mobility and motion-planning experiments using the robot’s new legs, which can grab handrails on the International Space Station.

As for whether robots designed for Gateway would really fall into the “humanoid” category, it’s worth considering that Gateway is designed for humans, implying that an effective robotic system on Gateway would need to be able to interact with the station in similar ways to how a human astronaut would. So, you’d expect to see arms with end-effectors that can grip things as well as push buttons, and some kind of mobility system—the legged version of Robonaut 2 seems like a likely template, but redesigned from the ground up to work in space, incorporating all the advances in robotics hardware and computing that have taken place over the last decade.

We’ve been pestering NASA about this for a little bit now, and they’re not ready to comment on this project, or even to confirm it. And again, everything in this article (besides the job post, which you should totally check out and consider applying for) is just speculation on our part, and we could be wrong about absolutely all of it. As soon as we hear more, we’ll definitely let you know. Continue reading

Posted in Human Robots

#435791 To Fly Solo, Racing Drones Have a Need ...

Drone racing’s ultimate vision of quadcopters weaving nimbly through obstacle courses has attracted far less excitement and investment than self-driving cars aimed at reshaping ground transportation. But the U.S. military and defense industry are betting on autonomous drone racing as the next frontier for developing AI so that it can handle high-speed navigation within tight spaces without human intervention.

The autonomous drone challenge requires split-second decision-making with six degrees of freedom instead of a car’s mere two degrees of road freedom. One research team developing the AI necessary for controlling autonomous racing drones is the Robotics and Perception Group at the University of Zurich in Switzerland. In late May, the Swiss researchers were among nine teams revealed to be competing in the two-year AlphaPilot open innovation challenge sponsored by U.S. aerospace company Lockheed Martin. The winning team will walk away with up to $2.25 million for beating other autonomous racing drones and a professional human drone pilot in head-to-head competitions.

“I think it is important to first point out that having an autonomous drone to finish a racing track at high speeds or even beating a human pilot does not imply that we can have autonomous drones [capable of] navigating in real-world, complex, unstructured, unknown environments such as disaster zones, collapsed buildings, caves, tunnels or narrow pipes, forests, military scenarios, and so on,” says Davide Scaramuzza, a professor of robotics and perception at the University of Zurich and ETH Zurich. “However, the robust and computationally efficient state estimation algorithms, control, and planning algorithms developed for autonomous drone racing would represent a starting point.”

The nine teams that made the cut—from a pool of 424 AlphaPilot applicants—will compete in four 2019 racing events organized under the Drone Racing League’s Artificial Intelligence Robotic Racing Circuit, says Keith Lynn, program manager for AlphaPilot at Lockheed Martin. To ensure an apples-to-apples comparison of each team’s AI secret sauce, each AlphaPilot team will upload its AI code into identical, specially-built drones that have the NVIDIA Xavier GPU at the core of the onboard computing hardware.

“Lockheed Martin is offering mentorship to the nine AlphaPilot teams to support their AI tech development and innovations,” says Lynn. The company “will be hosting a week-long Developers Summit at MIT in July, dedicated to workshopping and improving AlphaPilot teams’ code,” he added. He notes that each team will retain the intellectual property rights to its AI code.

The AlphaPilot challenge takes inspiration from older autonomous drone racing events hosted by academic researchers, Scaramuzza says. He credits Hyungpil Moon, a professor of robotics and mechanical engineering at Sungkyunkwan University in South Korea, for having organized the annual autonomous drone racing competition at the International Conference on Intelligent Robots and Systems since 2016.

It’s no easy task to create and train AI that can perform high-speed flight through complex environments by relying on visual navigation. One big challenge comes from how drones can accelerate sharply, take sharp turns, fly sideways, do zig-zag patterns and even perform back flips. That means camera images can suddenly appear tilted or even upside down during drone flight. Motion blur may occur when a drone flies very close to structures at high speeds and camera pixels collect light from multiple directions. Both cameras and visual software can also struggle to compensate for sudden changes between light and dark parts of an environment.

To lend AI a helping hand, Scaramuzza’s group recently published a drone racing dataset that includes realistic training data taken from a drone flown by a professional pilot in both indoor and outdoor spaces. The data, which includes complicated aerial maneuvers such as back flips, flight sequences that cover hundreds of meters, and flight speeds of up to 83 kilometers per hour, was presented at the 2019 IEEE International Conference on Robotics and Automation.

The drone racing dataset also includes data captured by the group’s special bioinspired event cameras that can detect changes in motion on a per-pixel basis within microseconds. By comparison, ordinary cameras need milliseconds (each millisecond being 1,000 microseconds) to compare motion changes in each image frame. The event cameras have already proven capable of helping drones nimbly dodge soccer balls thrown at them by the Swiss lab’s researchers.

The Swiss group’s work on the racing drone dataset received funding in part from the U.S. Defense Advanced Research Projects Agency (DARPA), which acts as the U.S. military’s special R&D arm for more futuristic projects. Specifically, the funding came from DARPA’s Fast Lightweight Autonomy program that envisions small autonomous drones capable of flying at high speeds through cluttered environments without GPS guidance or communication with human pilots.

Such speedy drones could serve as military scouts checking out dangerous buildings or alleys. They could also someday help search-and-rescue teams find people trapped in semi-collapsed buildings or lost in the woods. Being able to fly at high speed without crashing into things also makes a drone more efficient at all sorts of tasks by making the most of limited battery life, Scaramuzza says. After all, most drone battery life gets used up by the need to hover in flight and doesn’t get drained much by flying faster.

Even if AI manages to conquer the drone racing obstacle courses, that would be the end of the beginning of the technology’s development. What would still be required? Scaramuzza specifically singled out the need to handle low-visibility conditions involving smoke, dust, fog, rain, snow, fire, hail, as some of the biggest challenges for vision-based algorithms and AI in complex real-life environments.

“I think we should develop and release datasets containing smoke, dust, fog, rain, fire, etc. if we want to allow using autonomous robots to complement human rescuers in saving people lives after an earthquake or natural disaster in the future,” Scaramuzza says. Continue reading

Posted in Human Robots

#435769 The Ultimate Optimization Problem: How ...

Lucas Joppa thinks big. Even while gazing down into his cup of tea in his modest office on Microsoft’s campus in Redmond, Washington, he seems to see the entire planet bobbing in there like a spherical tea bag.

As Microsoft’s first chief environmental officer, Joppa came up with the company’s AI for Earth program, a five-year effort that’s spending US $50 million on AI-powered solutions to global environmental challenges.

The program is not just about specific deliverables, though. It’s also about mindset, Joppa told IEEE Spectrum in an interview in July. “It’s a plea for people to think about the Earth in the same way they think about the technologies they’re developing,” he says. “You start with an objective. So what’s our objective function for Earth?” (In computer science, an objective function describes the parameter or parameters you are trying to maximize or minimize for optimal results.)

Photo: Microsoft

Lucas Joppa

AI for Earth launched in December 2017, and Joppa’s team has since given grants to more than 400 organizations around the world. In addition to receiving funding, some grantees get help from Microsoft’s data scientists and access to the company’s computing resources.

In a wide-ranging interview about the program, Joppa described his vision of the “ultimate optimization problem”—figuring out which parts of the planet should be used for farming, cities, wilderness reserves, energy production, and so on.

Every square meter of land and water on Earth has an infinite number of possible utility functions. It’s the job of Homo sapiens to describe our overall objective for the Earth. Then it’s the job of computers to produce optimization results that are aligned with the human-defined objective.

I don’t think we’re close at all to being able to do this. I think we’re closer from a technology perspective—being able to run the model—than we are from a social perspective—being able to make decisions about what the objective should be. What do we want to do with the Earth’s surface?

Such questions are increasingly urgent, as climate change has already begun reshaping our planet and our societies. Global sea and air surface temperatures have already risen by an average of 1 degree Celsius above preindustrial levels, according to the Intergovernmental Panel on Climate Change.

Today, people all around the world participated in a “climate strike,” with young people leading the charge and demanding a global transition to renewable energy. On Monday, world leaders will gather in New York for the United Nations Climate Action Summit, where they’re expected to present plans to limit warming to 1.5 degrees Celsius.

Joppa says such summit discussions should aim for a truly holistic solution.

We talk about how to solve climate change. There’s a higher-order question for society: What climate do we want? What output from nature do we want and desire? If we could agree on those things, we could put systems in place for optimizing our environment accordingly. Instead we have this scattered approach, where we try for local optimization. But the sum of local optimizations is never a global optimization.

There’s increasing interest in using artificial intelligence to tackle global environmental problems. New sensing technologies enable scientists to collect unprecedented amounts of data about the planet and its denizens, and AI tools are becoming vital for interpreting all that data.

The 2018 report “Harnessing AI for the Earth,” produced by the World Economic Forum and the consulting company PwC, discusses ways that AI can be used to address six of the world’s most pressing environmental challenges (climate change, biodiversity, and healthy oceans, water security, clean air, and disaster resilience).

Many of the proposed applications involve better monitoring of human and natural systems, as well as modeling applications that would enable better predictions and more efficient use of natural resources.

Joppa says that AI for Earth is taking a two-pronged approach, funding efforts to collect and interpret vast amounts of data alongside efforts that use that data to help humans make better decisions. And that’s where the global optimization engine would really come in handy.

For any location on earth, you should be able to go and ask: What’s there, how much is there, and how is it changing? And more importantly: What should be there?

On land, the data is really only interesting for the first few hundred feet. Whereas in the ocean, the depth dimension is really important.

We need a planet with sensors, with roving agents, with remote sensing. Otherwise our decisions aren’t going to be any good.

AI for Earth isn’t going to create such an online portal within five years, Joppa stresses. But he hopes the projects that he’s funding will contribute to making such a portal possible—eventually.

We’re asking ourselves: What are the fundamental missing layers in the tech stack that would allow people to build a global optimization engine? Some of them are clear, some are still opaque to me.

By the end of five years, I’d like to have identified these missing layers, and have at least one example of each of the components.

Some of the projects that AI for Earth has funded seem to fit that desire. Examples include SilviaTerra, which used satellite imagery and AI to create a map of the 92 billion trees in forested areas across the United States. There’s also OceanMind, a non-profit that detects illegal fishing and helps marine authorities enforce compliance. Platforms like Wildbook and iNaturalist enable citizen scientists to upload pictures of animals and plants, aiding conservation efforts and research on biodiversity. And FarmBeats aims to enable data-driven agriculture with low-cost sensors, drones, and cloud services.

It’s not impossible to imagine putting such services together into an optimization engine that knows everything about the land, the water, and the creatures who live on planet Earth. Then we’ll just have to tell that engine what we want to do about it.

Editor’s note: This story is published in cooperation with more than 250 media organizations and independent journalists that have focused their coverage on climate change ahead of the UN Climate Action Summit. IEEE Spectrum’s participation in the Covering Climate Now partnership builds on our past reporting about this global issue. Continue reading

Posted in Human Robots