Tag Archives: computing
#439628 How a Simple Crystal Could Help Pave the ...
Vaccine and drug development, artificial intelligence, transport and logistics, climate science—these are all areas that stand to be transformed by the development of a full-scale quantum computer. And there has been explosive growth in quantum computing investment over the past decade.
Yet current quantum processors are relatively small in scale, with fewer than 100 qubits— the basic building blocks of a quantum computer. Bits are the smallest unit of information in computing, and the term qubits stems from “quantum bits.”
While early quantum processors have been crucial for demonstrating the potential of quantum computing, realizing globally significant applications will likely require processors with upwards of a million qubits.
Our new research tackles a core problem at the heart of scaling up quantum computers: how do we go from controlling just a few qubits, to controlling millions? In research published today in Science Advances, we reveal a new technology that may offer a solution.
What Exactly Is a Quantum Computer?
Quantum computers use qubits to hold and process quantum information. Unlike the bits of information in classical computers, qubits make use of the quantum properties of nature, known as “superposition” and “entanglement,” to perform some calculations much faster than their classical counterparts.
Unlike a classical bit, which is represented by either 0 or 1, a qubit can exist in two states (that is, 0 and 1) at the same time. This is what we refer to as a superposition state.
Demonstrations by Google and others have shown even current, early-stage quantum computers can outperform the most powerful supercomputers on the planet for a highly specialized (albeit not particularly useful) task—reaching a milestone we call quantum supremacy.
Google’s quantum computer, built from superconducting electrical circuits, had just 53 qubits and was cooled to a temperature close to -273℃ in a high-tech refrigerator. This extreme temperature is needed to remove heat, which can introduce errors to the fragile qubits. While such demonstrations are important, the challenge now is to build quantum processors with many more qubits.
Major efforts are underway at UNSW Sydney to make quantum computers from the same material used in everyday computer chips: silicon. A conventional silicon chip is thumbnail-sized and packs in several billion bits, so the prospect of using this technology to build a quantum computer is compelling.
The Control Problem
In silicon quantum processors, information is stored in individual electrons, which are trapped beneath small electrodes at the chip’s surface. Specifically, the qubit is coded into the electron’s spin. It can be pictured as a small compass inside the electron. The needle of the compass can point north or south, which represents the 0 and 1 states.
To set a qubit in a superposition state (both 0 and 1), an operation that occurs in all quantum computations, a control signal must be directed to the desired qubit. For qubits in silicon, this control signal is in the form of a microwave field, much like the ones used to carry phone calls over a 5G network. The microwaves interact with the electron and cause its spin (compass needle) to rotate.
Currently, each qubit requires its own microwave control field. It is delivered to the quantum chip through a cable running from room temperature down to the bottom of the refrigerator at close to -273 degrees Celsius. Each cable brings heat with it, which must be removed before it reaches the quantum processor.
At around 50 qubits, which is state-of-the-art today, this is difficult but manageable. Current refrigerator technology can cope with the cable heat load. However, it represents a huge hurdle if we’re to use systems with a million qubits or more.
The Solution Is ‘Global’ Control
An elegant solution to the challenge of how to deliver control signals to millions of spin qubits was proposed in the late 1990s. The idea of “global control” was simple: broadcast a single microwave control field across the entire quantum processor.
Voltage pulses can be applied locally to qubit electrodes to make the individual qubits interact with the global field (and produce superposition states).
It’s much easier to generate such voltage pulses on-chip than it is to generate multiple microwave fields. The solution requires only a single control cable and removes obtrusive on-chip microwave control circuitry.
For more than two decades global control in quantum computers remained an idea. Researchers could not devise a suitable technology that could be integrated with a quantum chip and generate microwave fields at suitably low powers.
In our work we show that a component known as a dielectric resonator could finally allow this. The dielectric resonator is a small, transparent crystal which traps microwaves for a short period of time.
The trapping of microwaves, a phenomenon known as resonance, allows them to interact with the spin qubits longer and greatly reduces the power of microwaves needed to generate the control field. This was vital to operating the technology inside the refrigerator.
In our experiment, we used the dielectric resonator to generate a control field over an area that could contain up to four million qubits. The quantum chip used in this demonstration was a device with two qubits. We were able to show the microwaves produced by the crystal could flip the spin state of each one.
The Path to a Full-Scale Quantum Computer
There is still work to be done before this technology is up to the task of controlling a million qubits. For our study, we managed to flip the state of the qubits, but not yet produce arbitrary superposition states.
Experiments are ongoing to demonstrate this critical capability. We’ll also need to further study the impact of the dielectric resonator on other aspects of the quantum processor.
That said, we believe these engineering challenges will ultimately be surmountable— clearing one of the greatest hurdles to realizing a large-scale spin-based quantum computer.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Serwan Asaad/UNSW, Author provided Continue reading
#438982 Quantum Computing and Reinforcement ...
Deep reinforcement learning is having a superstar moment.
Powering smarter robots. Simulating human neural networks. Trouncing physicians at medical diagnoses and crushing humanity’s best gamers at Go and Atari. While far from achieving the flexible, quick thinking that comes naturally to humans, this powerful machine learning idea seems unstoppable as a harbinger of better thinking machines.
Except there’s a massive roadblock: they take forever to run. Because the concept behind these algorithms is based on trial and error, a reinforcement learning AI “agent” only learns after being rewarded for its correct decisions. For complex problems, the time it takes an AI agent to try and fail to learn a solution can quickly become untenable.
But what if you could try multiple solutions at once?
This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.
The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.
Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.
The Bottleneck
Learning from trial and error comes intuitively to our brains.
Say you’re trying to navigate a new convoluted campground without a map. The goal is to get from the communal bathroom back to your campsite. Dead ends and confusing loops abound. We tackle the problem by deciding to turn either left or right at every branch in the road. One will get us closer to the goal; the other leads to a half hour of walking in circles. Eventually, our brain chemistry rewards correct decisions, so we gradually learn the correct route. (If you’re wondering…yeah, true story.)
Reinforcement learning AI agents operate in a similar trial-and-error way. As a problem becomes more complex, the number—and time—of each trial also skyrockets.
“Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation,” explained study author Dr. Hans Briegel at the Universität Innsbruck in Austria, who previously led efforts to speed up AI decision-making using quantum mechanics. If there’s pressure that allows “only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all,” he wrote.
Many attempts have tried speeding up reinforcement learning. Giving the AI agent a short-term “memory.” Tapping into neuromorphic computing, which better resembles the brain. In 2014, Briegel and colleagues showed that a “quantum brain” of sorts can help propel an AI agent’s decision-making process after learning. But speeding up the learning process itself has eluded our best attempts.
The Hybrid AI
The new study went straight for that previously untenable jugular.
The team’s key insight was to tap into the best of both worlds—quantum and classical computing. Rather than building an entire reinforcement learning system using quantum mechanics, they turned to a hybrid approach that could prove to be more practical. Here, the AI agent uses quantum weirdness as it’s trying out new approaches—the “trial” in trial and error. The system then passes the baton to a classical computer to give the AI its reward—or not—based on its performance.
At the heart of the quantum “trial” process is a quirk called superposition. Stay with me. Our computers are powered by electrons, which can represent only two states—0 or 1. Quantum mechanics is far weirder, in that photons (particles of light) can simultaneously be both 0 and 1, with a slightly different probability of “leaning towards” one or the other.
This noncommittal oddity is part of what makes quantum computing so powerful. Take our reinforcement learning example of navigating a new campsite. In our classic world, we—and our AI—need to decide between turning left or right at an intersection. In a quantum setup, however, the AI can (in a sense) turn left and right at the same time. So when searching for the correct path back to home base, the quantum system has a leg up in that it can simultaneously explore multiple routes, making it far faster than conventional, consecutive trail and error.
“As a consequence, an agent that can explore its environment in superposition will learn significantly faster than its classical counterpart,” said Briegel.
It’s not all theory. To test out their idea, the team turned to a programmable chip called a nanophotonic processor. Think of it as a CPU-like computer chip, but it processes particles of light—photons—rather than electricity. These light-powered chips have been a long time in the making. Back in 2017, for example, a team from MIT built a fully optical neural network into an optical chip to bolster deep learning.
The chips aren’t all that exotic. Nanophotonic processors act kind of like our eyeglasses, which can carry out complex calculations that transform light that passes through them. In the glasses case, they let people see better. For a light-based computer chip, it allows computation. Rather than using electrical cables, the chips use “wave guides” to shuttle photons and perform calculations based on their interactions.
The “error” or “reward” part of the new hardware comes from a classical computer. The nanophotonic processor is coupled to a traditional computer, where the latter provides the quantum circuit with feedback—that is, whether to reward a solution or not. This setup, the team explains, allows them to more objectively judge any speed-ups in learning in real time.
In this way, a hybrid reinforcement learning agent alternates between quantum and classical computing, trying out ideas in wibbly-wobbly “multiverse” land while obtaining feedback in grounded, classic physics “normality.”
A Quantum Boost
In simulations using 10,000 AI agents and actual experimental data from 165 trials, the hybrid approach, when challenged with a more complex problem, showed a clear leg up.
The key word is “complex.” The team found that if an AI agent has a high chance of figuring out the solution anyway—as for a simple problem—then classical computing works pretty well. The quantum advantage blossoms when the task becomes more complex or difficult, allowing quantum mechanics to fully flex its superposition muscles. For these problems, the hybrid AI was 63 percent faster at learning a solution compared to traditional reinforcement learning, decreasing its learning effort from 270 guesses to 100.
Now that scientists have shown a quantum boost for reinforcement learning speeds, the race for next-generation computing is even more lit. Photonics hardware required for long-range light-based communications is rapidly shrinking, while improving signal quality. The partial-quantum setup could “aid specifically in problems where frequent search is needed, for example, network routing problems” that’s prevalent for a smooth-running internet, the authors wrote. With a quantum boost, reinforcement learning may be able to tackle far more complex problems—those in the real world—than currently possible.
“We are just at the beginning of understanding the possibilities of quantum artificial intelligence,” said lead author Walther.
Image Credit: Oleg Gamulinskiy from Pixabay Continue reading
#438925 Nanophotonics Could Be the ‘Dark ...
The race to build the first practical quantum computers looks like a two-horse contest between machines built from superconducting qubits and those that use trapped ions. But new research suggests a third contender—machines based on optical technology—could sneak up on the inside.
The most advanced quantum computers today are the ones built by Google and IBM, which rely on superconducting circuits to generate the qubits that form the basis of quantum calculations. They are now able to string together tens of qubits, and while controversial, Google claims its machines have achieved quantum supremacy—the ability to carry out a computation beyond normal computers.
Recently this approach has been challenged by a wave of companies looking to use trapped ion qubits, which are more stable and less error-prone than superconducting ones. While these devices are less developed, engineering giant Honeywell has already released a machine with 10 qubits, which it says is more powerful than a machine made of a greater number of superconducting qubits.
But despite this progress, both of these approaches have some major drawbacks. They require specialized fabrication methods, incredibly precise control mechanisms, and they need to be cooled to close to absolute zero to protect the qubits from any outside interference.
That’s why researchers at Canadian quantum computing hardware and software startup Xanadu are backing an alternative quantum computing approach based on optics, which was long discounted as impractical. In a paper published last week in Nature, they unveiled the first fully programmable and scalable optical chip that can run quantum algorithms. Not only does the system run at room temperature, but the company says it could scale to millions of qubits.
The idea isn’t exactly new. As Chris Lee notes in Ars Technica, people have been experimenting with optical approaches to quantum computing for decades, because encoding information in photons’ quantum states and manipulating those states is relatively easy. The biggest problem was that optical circuits were very large and not readily programmable, which meant you had to build a new computer for every new problem you wanted to solve.
That started to change thanks to the growing maturity of photonic integrated circuits. While early experiments with optical computing involved complex table-top arrangements of lasers, lenses, and detectors, today it’s possible to buy silicon chips not dissimilar to electronic ones that feature hundreds of tiny optical components.
In recent years, the reliability and performance of these devices has improved dramatically, and they’re now regularly used by the telecommunications industry. Some companies believe they could be the future of artificial intelligence too.
This allowed the Xanadu researchers to design a silicon chip that implements a complex optical network made up of beam splitters, waveguides, and devices called interferometers that cause light sources to interact with each other.
The chip can generate and manipulate up to eight qubits, but unlike conventional qubits, which can simultaneously be in two states, these qubits can be in any configuration of three states, which means they can carry more information.
Once the light has travelled through the network, it is then fed out to cutting-edge photon-counting detectors that provide the result. This is one of the potential limitations of the system, because currently these detectors need to be cryogenically cooled, although the rest of the chip does not.
But most importantly, the chip is easily re-programmable, which allows it to tackle a variety of problems. The computation can be controlled by adjusting the settings of these interferometers, but the researchers have also developed a software platform that hides the physical complexity from users and allows them to program it using fairly conventional code.
The company announced that its chips were available on the cloud in September of 2020, but the Nature paper is the first peer-reviewed test of their system. The researchers verified that the computations being done were genuinely quantum mechanical in nature, but they also implemented two more practical algorithms: one for simulating molecules and the other for judging how similar two graphs are, which has applications in a variety of pattern recognition problems.
In an accompanying opinion piece, Ulrik Andersen from the Technical University of Denmark says the quality of the qubits needs to be improved considerably and photon losses reduced if the technology is ever to scale to practical problems. But, he says, this breakthrough suggests optical approaches “could turn out to be the dark horse of quantum computing.”
Image Credit: Shahadat Rahman on Unsplash Continue reading